11 research outputs found

    Cycles of heat exposure elevate metabolic enzyme genes and alters digestion in mussels

    Get PDF
    The intertidal sea mussel Mytilus californianus inhabits the Pacific coastline of North America. As a sessile organism it must cope with daily fluctuations of the marine and terrestrial environments. Organisms in stressful environments are commonly faced with energetic trade-offs between somatic and reproductive growth and stress management. Although, this energetic theory is generally accepted for mussels as well, the spectrum of mechanisms underlying this framework have not been widely investigated. In the current study we hypothesized that mussels acclimated to a cyclical moderately warm aerial environment would display enhanced transcript abundance of genes related to metabolism and exhibit resilient digestive enzyme activity (energy acquisition). Following acclimation to simulated tidal regimes in the laboratory we observed higher gene-expression of citrate synthase (CS), citrate lyase (ACLY), and mammalian target of rapamycin (MTOR) in heat stressed mussels. The expression of CS and MTOR was not elevated under acute thermal stress, suggestive that repeated stress is required for robust expression of these genes given that all other environmental variables are constant. We also observed reduced activity of the digestive enzyme, amylase in heat-shocked acclimated mussels (a proxy for energy acquisition). Our results suggest that mussels that settle high on shore not only face the challenge of thermal stress repair and limited access to food but may also be compromised by reduced digestive performance. Mussels may have adapted to cyclical energetic stress by overexpressing particular energy-related genes that can mitigate the disturbance to energy balance once the abundant transcripts are translated into functional proteins

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Kinetic constraints on the In-situ remediation of soils contaminated with organic chemicals.

    No full text
    Cleanup of contaminated soils to comply with soil quality limits currently receives much interest.In-situ remediation of contaminated soils relies on the ability of the techniques employed to enhance the rate of release of contaminants from the soil-sorbed and nonaqueous phase liquid (NAPL) phases into the aqueous or gaseous phases from which they can be more readily removed and treated. Contaminant concentrations in these “environmentally mobile” forms usually decline over time so that the economic efficiency and the overall success of remediation technologies are subject to the “law of diminishing returns”. In this paper we consider the “state of the art” in our understanding of NAPL dissolution and transport, desorption of soilsorbed contaminants and fluid flow in porous media. The extent to which these processes may constrain the success of bioremediation, pump-and-treat remediation and soil venting in relation to established soil quality limits is addressed. Finally, we suggest directions for future research and comment on legislative considerations

    EXTRAGALACTIC GAMMA-RAY SOURCES

    No full text
    corecore