99 research outputs found

    Is There Semantic Conflict in the Stroop Task? Further evidence from a modified two-to-one Stroop paradigm combined with single-letter coloring and cueing

    Get PDF
    This research addressed current controversies concerning the contribution of semantic conflict to the Stroop interference effect and its reduction by a single-letter coloring and cueing procedure. On the first issue, it provides, for the first time, unambiguous evidence for a contribution of semantic conflict to the (overall) Stroop interference effect. The reported data remained inconclusive on the second issue, despite being collected in a considerable sample and analyzed with both classical (frequentist) and Bayesian inferential approaches. Given that in all past Stroop studies, semantic conflict was possibly confounded with either response conflict (e.g., when semantic-associative items [SKYblue] are used to induce semantic conflict) or with facilitation (when color-congruent items [BLUEblue] are used as baseline to derive a magnitude for semantic conflict), its genuine contribution to the Stroop interference effect is the most critical result reported in the present study. Indeed, it leaves no doubt - in complete contrast to dominant single-stage response competition models (e.g., Roelofs, 2003) - that selection occurs at the semantic level in the Stroop task. The immediate implications for the composite (as opposed to unitary) nature of the Stroop interference effect and other still unresolved issues in the Stroop literature are outlined further

    The Neurocognition of Prosody

    Get PDF
    Prosody is one of the most undervalued components of language, despite its fulfillment of manifold purposes. It can, for instance, help assign the correct meaning to compounds such as “white house” (linguistic function), or help a listener understand how a speaker feels (emotional function). However, brain-based models that take into account the role prosody plays in dynamic speech comprehension are still rare. This is probably due to the fact that it has proven difficult to fully denote the neurocognitive architecture underlying prosody. This review discusses clinical and neuroscientific evidence regarding both linguistic and emotional prosody. It will become obvious that prosody processing is a multistage operation and that its temporally and functionally distinct processing steps are anchored in a functionally differentiated brain network

    The Shift from Local to Global Visual Processing in 6-Year-Old Children Is Associated with Grey Matter Loss

    Get PDF
    International audienceBackground: A real-world visual scene consists of local elements (e.g. trees) that are arranged coherently into a global configuration (e.g. a forest). Children show psychological evolution from a preference for local visual information to an adult-like preference for global visual information, with the transition in visual preference occurring around 6 years of age. The brain regions involved in this shift in visual preference have not been described. Methods and Results: We used voxel-based morphometry (VBM) to study children during this developmental window to investigate changes in gray matter that underlie the shift from a bias for local to global visual information. Six-year-old children were assigned to groups according to their judgment on a global/local task. The first group included children who still presented with local visual processing biases, and the second group included children who showed global visual processing biases. VBM results indicated that compared to children with local visual processing biases, children with global visual processing biases had a loss of gray matter in the right occipital and parietal visuospatial areas. Conclusions: These anatomical findings are in agreement with previous findings in children with neurodevelopmental disorders and represent the first structural identification of brain regions that allow healthy children to develop a global perception of the visual world

    Early differential sensitivity of evoked-potentials to local and global shape during the perception of three-dimensional objects

    Get PDF
    Here we investigated the time course underlying differential processing of local and global shape information during the perception of complex three-dimensional (3D) objects. Observers made shape matching judgments about pairs of sequentially presented multipart novel objects. Event-related potentials (ERPs) were used to measure perceptual sensitivity to 3D shape differences in terms of local part structure and global shape configuration - based on predictions derived from hierarchical structural description models of object recognition. There were three types of different object trials in which stimulus pairs (1) shared local parts but differed in global shape configuration; (2) contained different local parts but shared global configuration or (3) shared neither local parts nor global configuration. Analyses of the ERP data showed differential amplitude modulation as a function of shape similarity as early as the N1 component between 146-215 ms post-stimulus onset. These negative amplitude deflections were more similar between objects sharing global shape configuration than local part structure. Differentiation among all stimulus types was reflected in N2 amplitude modulations between 276–330 ms. sLORETA inverse solutions showed stronger involvement of left occipitotemporal areas during the N1 for object discrimination weighted towards local part structure. The results suggest that the perception of 3D object shape involves parallel processing of information at local and global scales. This processing is characterised by relatively slow derivation of ‘fine-grained’ local shape structure, and fast derivation of ‘coarse-grained’ global shape configuration. We propose that the rapid early derivation of global shape attributes underlies the observed patterns of N1 amplitude modulations

    Results of a pilot study on the involvement of bilateral inferior frontal gyri in emotional prosody perception: an rTMS study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The right hemisphere may play an important role in paralinguistic features such as the emotional melody in speech. The extent of this involvement however is unclear. Imaging studies have shown involvement of both left and right inferior frontal gyri in emotional prosody perception. The present pilot study examined whether these brain areas are critically involved in the processing of emotional prosody and of semantics in 9 healthy subjects. Repetitive transcranial magnetic stimulation was used with a coil centred over left and right inferior frontal gyri, as localized by neuronavigation based on the subject's MRI. A sham condition was included. An online-TMS approach was applied; an emotional language task was completed during stimulation. This computerized task consisted of sentences pronounced by actors. In the semantics condition an emotion (fear, anger or neutral) was expressed in the content pronounced with a neutral intonation. In the prosody condition the emotion was expressed in the intonation, while the content was neutral.</p> <p>Results</p> <p>Reaction times on the emotional prosody task condition were significantly longer after rTMS over both the right and the left inferior frontal gyrus as compared to sham stimulation and after controlling for learning effects associated with order of condition. When taking all emotions together, there was no difference in effect on reaction times between the right and left stimulation. For the emotion Fear, reaction times were significantly longer after stimulating the left inferior frontal gyrus as compared to the right inferior frontal gyrus. Reaction times in the semantics task condition were not significantly different between the three TMS conditions.</p> <p>Conclusions</p> <p>The data indicate a critical involvement of both the right and the left inferior frontal gyrus in emotional prosody perception. The findings of this pilot study need replication. Future studies should include more subjects and examine whether the left and right inferior frontal gyrus play a differential role and complement each other, e.g. in the integrated processing of linguistic and prosodic aspects of speech, respectively.</p

    Time Course of the Involvement of the Right Anterior Superior Temporal Gyrus and the Right Fronto-Parietal Operculum in Emotional Prosody Perception

    Get PDF
    In verbal communication, not only the meaning of the words convey information, but also the tone of voice (prosody) conveys crucial information about the emotional state and intentions of others. In various studies right frontal and right temporal regions have been found to play a role in emotional prosody perception. Here, we used triple-pulse repetitive transcranial magnetic stimulation (rTMS) to shed light on the precise time course of involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum. We hypothesized that information would be processed in the right anterior superior temporal gyrus before being processed in the right fronto-parietal operculum. Right-handed healthy subjects performed an emotional prosody task. During listening to each sentence a triplet of TMS pulses was applied to one of the regions at one of six time points (400–1900 ms). Results showed a significant main effect of Time for right anterior superior temporal gyrus and right fronto-parietal operculum. The largest interference was observed half-way through the sentence. This effect was stronger for withdrawal emotions than for the approach emotion. A further experiment with the inclusion of an active control condition, TMS over the EEG site POz (midline parietal-occipital junction), revealed stronger effects at the fronto-parietal operculum and anterior superior temporal gyrus relative to the active control condition. No evidence was found for sequential processing of emotional prosodic information from right anterior superior temporal gyrus to the right fronto-parietal operculum, but the results revealed more parallel processing. Our results suggest that both right fronto-parietal operculum and right anterior superior temporal gyrus are critical for emotional prosody perception at a relatively late time period after sentence onset. This may reflect that emotional cues can still be ambiguous at the beginning of sentences, but become more apparent half-way through the sentence

    It's not what you say but the way that you say it: an fMRI study of differential lexical and non-lexical prosodic pitch processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aims to identify the neural substrate involved in prosodic pitch processing. Functional magnetic resonance imaging was used to test the premise that prosody pitch processing is primarily subserved by the right cortical hemisphere.</p> <p>Two experimental paradigms were used, firstly pairs of spoken sentences, where the only variation was a single internal phrase pitch change, and secondly, a matched condition utilizing pitch changes within analogous tone-sequence phrases. This removed the potential confounder of lexical evaluation. fMRI images were obtained using these paradigms.</p> <p>Results</p> <p>Activation was significantly greater within the right frontal and temporal cortices during the tone-sequence stimuli relative to the sentence stimuli.</p> <p>Conclusion</p> <p>This study showed that pitch changes, stripped of lexical information, are mainly processed by the right cerebral hemisphere, whilst the processing of analogous, matched, lexical pitch change is preferentially left sided. These findings, showing hemispherical differentiation of processing based on stimulus complexity, are in accord with a 'task dependent' hypothesis of pitch processing.</p

    Social cognitive deficits and their neural correlates in progressive supranuclear palsy

    Get PDF
    Although progressive supranuclear palsy is defined by its akinetic rigidity, vertical supranuclear gaze palsy and falls, cognitive impairments are an important determinant of patients’ and carers’ quality of life. Here, we investigate whether there is a broad deficit of modality-independent social cognition in progressive supranuclear palsy and explore the neural correlates for these. We recruited 23 patients with progressive supranuclear palsy (using clinical diagnostic criteria, nine with subsequent pathological confirmation) and 22 age- and education-matched controls. Participants performed an auditory (voice) emotion recognition test, and a visual and auditory theory of mind test. Twenty-two patients and 20 controls underwent structural magnetic resonance imaging to analyse neural correlates of social cognition deficits using voxel-based morphometry. Patients were impaired on the voice emotion recognition and theory of mind tests but not auditory and visual control conditions. Grey matter atrophy in patients correlated with both voice emotion recognition and theory of mind deficits in the right inferior frontal gyrus, a region associated with prosodic auditory emotion recognition. Theory of mind deficits also correlated with atrophy of the anterior rostral medial frontal cortex, a region associated with theory of mind in health. We conclude that patients with progressive supranuclear palsy have a multimodal deficit in social cognition. This deficit is due, in part, to progressive atrophy in a network of frontal cortical regions linked to the integration of socially relevant stimuli and interpretation of their social meaning. This impairment of social cognition is important to consider for those managing and caring for patients with progressive supranuclear palsy

    The relation between cognition and brain functioning: an introduction to neuroscience

    No full text
    National audienc
    corecore