11,305 research outputs found

    Nanoscale periodicity in stripe-forming systems at high temperature: Au/W(110)

    Full text link
    We observe using low-energy electron microscopy the self-assembly of monolayer-thick stripes of Au on W(110) near the transition temperature between stripes and the non-patterned (homogeneous) phase. We demonstrate that the amplitude of this Au stripe phase decreases with increasing temperature and vanishes at the order-disorder transition (ODT). The wavelength varies much more slowly with temperature and coverage than theories of stress-domain patterns with sharp phase boundaries would predict, and maintains a finite value of about 100 nm at the ODT. We argue that such nanometer-scale stripes should often appear near the ODT.Comment: 5 page

    Determining the structure of Ru(0001) from low-energy electron diffraction of a single terrace

    Full text link
    While a perfect hcp (0001) surface has three-fold symmetry, the diffraction patterns commonly obtained are six-fold symmetric. This apparent change in symmetry occurs because on a stepped surface, the atomic layers on adjacent terraces are rotated by 180 degrees. Here we use a Low-Energy Electron Microscope to acquire the three-fold diffraction pattern from a single hcp Ru terrace and measure the intensity-vs-energy curves for several diffracted beams. By means of multiple scattering calculations fitted to the experimental data with a Pendry R-factor of 0.077, we find that the surface is contracted by 3.5(+-0.9) at 456 K.Comment: 10 pages, 4 figures. Corrected some typos, added more details. Accepted for publication in Surface Science (Letters

    Real Space Observations of Magnesium Hydride Formation and Decomposition

    Full text link
    The mechanisms of magnesium hydride formation and thermal decomposition are directly examined using in-situ imaging.Comment: 3 pages, 4 figure

    How metal films de-wet substrates - identifying the kinetic pathways and energetic driving forces

    Full text link
    We study how single-crystal chromium films of uniform thickness on W(110) substrates are converted to arrays of three-dimensional (3D) Cr islands during annealing. We use low-energy electron microscopy (LEEM) to directly observe a kinetic pathway that produces trenches that expose the wetting layer. Adjacent film steps move simultaneously uphill and downhill relative to the staircase of atomic steps on the substrate. This step motion thickens the film regions where steps advance. Where film steps retract, the film thins, eventually exposing the stable wetting layer. Since our analysis shows that thick Cr films have a lattice constant close to bulk Cr, we propose that surface and interface stress provide a possible driving force for the observed morphological instability. Atomistic simulations and analytic elastic models show that surface and interface stress can cause a dependence of film energy on thickness that leads to an instability to simultaneous thinning and thickening. We observe that de-wetting is also initiated at bunches of substrate steps in two other systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are converted into patterns of unidirectional stripes as the trenches that expose the wetting layer lengthen along the W[001] direction. Finally, we observe how 3D Cr islands form directly during film growth at elevated temperature. The Cr mesas (wedges) form as Cr film steps advance down the staircase of substrate steps, another example of the critical role that substrate steps play in 3D island formation

    Kinetics and thermodynamics of carbon segregation and graphene growth on Ru(0001)

    Full text link
    We measure the concentration of carbon adatoms on the Ru(0001) surface that are in equilibrium with C atoms in the crystal's bulk by monitoring the electron reflectivity of the surface while imaging. During cooling from high temperature, C atoms segregate to the Ru surface, causing graphene islands to nucleate. Using low-energy electron microscopy (LEEM), we measure the growth rate of individual graphene islands and, simultaneously, the local concentration of C adatoms on the surface. We find that graphene growth is fed by the supersaturated, two-dimensional gas of C adatoms rather than by direct exchange between the bulk C and the graphene. At long times, the rate at which C diffuses from the bulk to the surface controls the graphene growth rate. The competition among C in three states - dissolved in Ru, as an adatom, and in graphene - is quantified and discussed. The adatom segregation enthalpy determined by applying the simple Langmuir-McLean model to the temperature-dependent equilibrium concentration seriously disagrees with the value calculated from first-principles. This discrepancy suggests that the assumption in the model of non-interacting C is not valid

    Should We Learn Probabilistic Models for Model Checking? A New Approach and An Empirical Study

    Get PDF
    Many automated system analysis techniques (e.g., model checking, model-based testing) rely on first obtaining a model of the system under analysis. System modeling is often done manually, which is often considered as a hindrance to adopt model-based system analysis and development techniques. To overcome this problem, researchers have proposed to automatically "learn" models based on sample system executions and shown that the learned models can be useful sometimes. There are however many questions to be answered. For instance, how much shall we generalize from the observed samples and how fast would learning converge? Or, would the analysis result based on the learned model be more accurate than the estimation we could have obtained by sampling many system executions within the same amount of time? In this work, we investigate existing algorithms for learning probabilistic models for model checking, propose an evolution-based approach for better controlling the degree of generalization and conduct an empirical study in order to answer the questions. One of our findings is that the effectiveness of learning may sometimes be limited.Comment: 15 pages, plus 2 reference pages, accepted by FASE 2017 in ETAP

    Structure and magnetism in ultrathin iron oxides characterized by low energy electron microscopy

    Get PDF
    We have grown epitaxial films a few atomic layers thick of iron oxides on ruthenium. We characterize the growth by low energy electron microscopy. Using selected area diffraction and intensity vs. voltage spectroscopy, we detect two distinct phases which are assigned to wustite and magnetite. Spin polarized low energy electron microscopy shows magnetic domain patterns in the magnetite phase at room temperature.Comment: 21 pages, 10 figures, for J. Phys Cond Matt special LEEM/PEEM issue in honor of E. Baue

    Flux and spectral variations in the Circinus Galaxy

    Get PDF
    We report on a dramatic flux (50 % increase in the LECS and MECS band) and spectral variation between two BeppoSAX observations of the Circinus Galaxy performed almost three years apart. Through the analysis of all Chandra observations available in the archive, including a new DDT observation on May 2001, we show that a high flux state of an extremely variable Ultra Luminous X-ray source (CG X-1: Bauer et al. 2001}, which is within the adopted BeppoSAX source extraction region of 2", is the most likely explanation for most of the observed variation. However, the presence of a high flux 6.7 keV line and the spectral variation of the PDS in the new BeppoSAX data could be partly due to intrinsic variation of the nucleus. Comparing the longest Chandra observation and the BeppoSAX one, we find that the long-term flux variability of CG X-1 is not accompanied by a significant spectral variability. We also re-analysed the Chandra HEG nuclear spectra and report on the presence of a Compton shoulder with a flux of about 20% the line core, in agreement with theoretical expectations for Compton-thick matter.Comment: 7 pages, 3 figures, accepted for publication on A&

    The XMM deep survey in the CDF-S II. a 9-20 keV selection of heavily obscured active galaxies at z>1.7

    Get PDF
    We present results on a search of heavily obscured active galaxies z>1.7 using the rest-frame 9-20 keV excess for X-ray sources detected in the deep XMM-CDFS survey. Out of 176 sources selected with the conservative detection criteria (>8 sigma) in the first source catalogue of Ranalli et al., 46 objects lie in the redshift range of interest with the median redshift z~2.5. Their typical rest-frame 10-20 keV luminosity is 1e+44 erg/s, as observed. Among optically faint objects that lack spectroscopic redshift, four were found to be strongly absorbed X-ray sources, and the enhanced Fe K emission or absorption features in their X-ray spectra were used to obtain X-ray spectroscopic redshifts. Using the X-ray colour-colour diagram based on the rest-frame 3-5 keV, 5-9 keV, and 9-20 keV bands, seven objects were selected for their 9-20 keV excess and were found to be strongly absorbed X-ray sources with column density of nH > 0.6e+24 cm-2, including two possible Compton thick sources. While they are emitting at quasar luminosity, ~3/4 of the sample objects are found to be absorbed by nH > 1e+22 cm-2. A comparison with local AGN at the matched luminosity suggests an increasing trend of the absorbed source fraction for high-luminosity AGN towards high redshifts.Comment: 9 pages, 7 figures. Accepted for publication in A&

    A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo

    Full text link
    We present a method to search for transient GWs using a network of detectors with different spectral and directional sensitivities: the interferometer Virgo and the bar detector AURIGA. The data analysis method is based on the measurements of the correlated energy in the network by means of a weighted cross-correlation. To limit the computational load, this coherent analysis step is performed around time-frequency coincident triggers selected by an excess power event trigger generator tuned at low thresholds. The final selection of GW candidates is performed by a combined cut on the correlated energy and on the significance as measured by the event trigger generator. The method has been tested on one day of data of AURIGA and Virgo during September 2005. The outcomes are compared to the results of a stand-alone time-frequency coincidence search. We discuss the advantages and the limits of this approach, in view of a possible future joint search between AURIGA and one interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7 Proceeding
    • …
    corecore