11 research outputs found

    Stress-induced lncRNA LASTR fosters cancer cell fitness by regulating the activity of the U4/U6 recycling factor SART3

    Get PDF
    Dysregulated splicing is a common event in cancer even in the absence of mutations in the core splicing machinery. The aberrant long non-coding transcriptome constitutes an uncharacterized level of regulation of post-transcriptional events in cancer. Here, we found that the stress-induced long non-coding RNA (lncRNA), LINCO2657 or LASTR (lncRNA associated with SART3 regulation of splicing), is upregulated in hypoxic breast cancer and is essential for the growth of LASTR-positive triple-negative breast tumors. LASTR is upregulated in several types of epithelial cancers due to the activation of the stress-induced JNK/c-JUN pathway. Using a mass-spectrometry based approach, we identified the RNA-splicing factor SART3 as a LASTR-interacting partner. We found that LASTR promotes splicing efficiency by controlling SART3 association with the U4 and U6 small nuclear ribonucleoproteins (snRNP) during spliceosome recycling. Intron retention induced by LASTR depletion downregulates expression of essential genes, ultimately decreasing the fitness of cancer cells

    Integrator restrains paraspeckles assembly by promoting isoform switching of the lncRNA NEAT1

    Get PDF
    RNA 3' end processing provides a source of transcriptome diversification which affects various (patho)-physiological processes. A prime example is the transcript isoform switch that leads to the read-through expression of the long non-coding RNA NEAT1_2, at the expense of the shorter polyadenylated transcript NEAT1_1. NEAT1_2 is required for assembly of paraspeckles (PS), nuclear bodies that protect cancer cells from oncogene-induced replication stress and chemotherapy. Searching for proteins that modulate this event, we identified factors involved in the 3' end processing of polyadenylated RNA and components of the Integrator complex. Perturbation experiments established that, by promoting the cleavage of NEAT1_2, Integrator forces NEAT1_2 to NEAT1_1 isoform switching and, thereby, restrains PS assembly. Consistently, low levels of Integrator subunits correlated with poorer prognosis of cancer patients exposed to chemotherapeutics. Our study establishes that Integrator regulates PS biogenesis and a link between Integrator, cancer biology, and chemosensitivity, which may be exploited therapeutically

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    A Tale of NEAT1 Tails

    No full text
    The eukaryotic genome is pervasively transcribed, and the vast majority of the RNA species are not generated from protein-coding genes, but rather from the so called "dark matter" of the genome. Emerging evidence indicates that such non-coding transcripts may participate in a broad spectrum of biological processes. A well-conserved and very abundant non-coding RNA is NEAT1, which is essential for the formation and structural integrity of membrane-less nuclear bodies known as paraspeckles (PS). Although cell-based studies identified NEAT1-PS as putative regulators of gene expression through retention of hyperdited mRNAs and/or transcription factors, it has been unclear under which specific physiological conditions PS are formed in vivo and whether they have any biological relevance. We have recently demonstrated that PS are assembled in skin epidermal cells in response to oncogenic stress and that Neat1 is required for tumor initiation and progression into aggressive and invasive lesions in a classical two-stage chemically-induced skin cancer model. We provided evidence that oncogenic-induction of PS is dependent on the stress modulator p53. NEAT1 is a bona fide target of p53 and activation of p53 by different stress stimuli, including DNA damaging agents, stimulates the formation of PS. NEAT1 targeting in established human cancer cell lines induced synthetic lethality when combined to genotoxic chemotherapeutics, including PARP inhibitors, and non-genotoxic activation of p53. Importantly, the effect was greater when we specifically silenced NEAT1_2, the long isoform of NEAT1 and structural component of PS, suggesting that PS modulation is a promising therapeutic avenue to enhance chemosensitivity. To identify novel modulators of the NEAT1 isoform switch, we isolated PS from cell nuclei and purified NEAT1 RNA Binding Proteins (RBPs). We identified factors involved in the 3' end processing of polyadenylated RNA as well as several components of the Integrator complex (INT). INT restrains NEAT1_2 production, and hence PS formation, by favoring the 3' end processing of the short polyadenylated form NEAT1_1. Stress-induced PS maintain their colocalization with INT, thus suggesting that Integrator remains trapped into PS upon stress. In agreement with these findings, PS assembly resulted in transcriptional read-through at known INT target genes, including histones. Finally, low INT levels predict poor outcome of patients exposed to chemotherapy, thus confirming that targeting the RNA 3' end processing of NEAT1 is an interesting therapeutic strategy to modulate chemosensitivity.status: publishe

    Probing Long Non-coding RNA-Protein Interactions

    No full text

    Probing Long Non-coding RNA-Protein Interactions

    No full text
    Non-coding RNA sequences outnumber the protein-coding genes in the human genome, however our knowledge of their functions is still limited. RNA-binding proteins follow the transcripts, including non-coding RNAs, throughout their life, regulating not only maturation, nuclear export, stability and eventually translation, but also RNA functions. Therefore, development of sophisticated methods to study RNA-protein interactions are key to the systematic characterization of lncRNAs. Although mostly applicable to RNA-protein interactions in general, many approaches, especially the computational ones, need adjustment to be adapted to the length and complexity of lncRNA transcripts. Here we critically review all the wet lab and computational methods to study lncRNA-protein interactions and their potential to clarify the dark side of the genome.status: publishe

    p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity

    No full text
    In a search for mediators of the p53 tumor suppressor pathway, which induces pleiotropic and often antagonistic cellular responses, we identified the long noncoding RNA (lncRNA) NEAT1. NEAT1 is an essential architectural component of paraspeckle nuclear bodies, whose pathophysiological relevance remains unclear. Activation of p53, pharmacologically or by oncogene-induced replication stress, stimulated the formation of paraspeckles in mouse and human cells. Silencing Neat1 expression in mice, which prevents paraspeckle formation, sensitized preneoplastic cells to DNA-damage-induced cell death and impaired skin tumorigenesis. We provide mechanistic evidence that NEAT1 promotes ATR signaling in response to replication stress and is thereby engaged in a negative feedback loop that attenuates oncogene-dependent activation of p53. NEAT1 targeting in established human cancer cell lines induced synthetic lethality with genotoxic chemotherapeutics, including PARP inhibitors, and nongenotoxic activation of p53. This study establishes a key genetic link between NEAT1 paraspeckles, p53 biology and tumorigenesis and identifies NEAT1 as a promising target to enhance sensitivity of cancer cells to both chemotherapy and p53 reactivation therapy.status: publishe

    P53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity

    No full text
    21nonenoneAdriaens, Carmen; Standaert, Laura; Barra, Jasmine; Latil, Mathilde; Verfaillie, Annelien; Kalev, Peter; Boeckx, Bram; Wijnhoven, Paul W. G.; Radaelli, Enrico; Vermi, William; Leucci, Eleonora; Lapouge, Gaëlle; Beck, Benjamin; Van Den Oord, Joost; Nakagawa, Shinichi; Hirose, Tetsuro; Sablina, Anna A.; Lambrechts, Diether; Aerts, Stein; Blanpain, Cédric; Marine, Jean-ChristopheAdriaens, Carmen; Standaert, Laura; Barra, Jasmine; Latil, Mathilde; Verfaillie, Annelien; Kalev, Peter; Boeckx, Bram; Wijnhoven, Paul W. G.; Radaelli, Enrico; Vermi, William; Leucci, Eleonora; Lapouge, Gaëlle; Beck, Benjamin; Van Den Oord, Joost; Nakagawa, Shinichi; Hirose, Tetsuro; Sablina, Anna A.; Lambrechts, Diether; Aerts, Stein; Blanpain, Cédric; Marine, Jean Christoph

    Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma

    Get PDF
    International audienceIdentification and functional validation of oncogenic drivers are essential steps toward advancing cancer precision medicine. Here, we have presented a comprehensive analysis of the somatic genomic landscape of the widely used BRAF V600E-and NRAS Q61K-driven mouse models of melanoma. By integrating the data with publically available genomic, epigenomic, and transcriptomic information from human clinical samples, we confirmed the importance of several genes and pathways previously implicated in human melanoma, including the tumor-suppressor genes phosphatase and tensin homolog (PTEN), cyclin dependent kinase inhibitor 2A (CDKN2A), LKB1, and others. Importantly, this approach also identified additional putative melanoma drivers with prognostic and therapeutic relevance. Surprisingly, one of these genes encodes the tyrosine kinase FES. Whereas FES is highly expressed in normal human melanocytes, FES expression is strongly decreased in over 30% of human melanomas. This downregulation correlates with poor overall survival. Correspondingly, engineered deletion of Fes accelerated tumor progression in a BRAF V600E-driven mouse model of melanoma. Together, these data implicate FES as a driver of melanoma progression and demonstrate the potential of cross-species oncogenomic approaches combined with mouse modeling to uncover impactful mutations and oncogenic driver alleles with clinical importance in the treatment of human cancer
    corecore