89 research outputs found

    The rheology of caramel

    Get PDF
    The rheology of caramel was determined as a function of processing temperature and hydrocolloid additions. As the processing temperature increased the water content decreased and the caramel viscosity increased. X-ray diffraction showed that although crystalline fat was present, for the most part the sugars were in the amorphous state. The exception was the lowest water content caramel (7.9% water w.w.b.) which had been processed to a temperature of 122ºC. This had a small amount of crystalline fructose. Caramel rheology was assessed by rotational and capillary rheometry. Rotational rheometry gave information on the steady shear viscosity, the dynamic parameters (storage and loss moduli and related functions) and the creep compliance and recovery response. Capillary rheometry gave shear viscosities at high shear rates and an extensional viscosity. It was found that caramel without added hydrocolloids had behavior which was close to a Newtonian liquid. The only exception to this was the values obtained for the Trouton ratio which ranged from 10 to 40. This was considerably higher than the value of 3 for a Newtonian fluid and may reflect the difficulties in making measurements on these relatively low viscosity systems in the capillary rheometer. The viscosities obtained from steady shear, oscillation and creep were combined and three approaches were used to model the data as a function of measurement temperature and water content. An empirical statistical model using a second order polynomial, an Arrhenius fit and a Williams Landel Ferry (WLF) model. The former and the latter gave a good fit to the data although the constants used in the WLF model varied with the water content of the caramel. Arrhenius plots showed curvature particularly at low water contents. Incorporation of the hydrocolloids carrageenan and gellan gum into the caramel made the material non-Newtonian and elastic. For carrageenan incorporation in particular the Trouton ratio increased with carrageenan concentration reaching a value ~500 at a strain rate of 100s-1 for the caramel containing 0.2% carrageenan It was demonstrated that incorporation of carrageenan could be used to prevent cold flow in caramels processed at relatively high water contents. Glass transition temperatures were measured by differential scanning calorimetry and calculated from the temperature dependence of the shift factors used to superimpose the oscillatory rheological data. Generally there was agreement between the two approaches although for some gellan gum containing samples the rheological Tg was about 10ºC higher than the DSC value. Fragility calculated from the WLF constants for caramel was high as has been reported for sugars. The Tg for both caramel and sugar water mixtures calculated using the Couchman-Karastz equation in the water content of interest (9-15% w.w.b.) was some 30-40°C higher than measured. It is suggested that this disagreement could be related to the high fragility of the sugar water systems. Isoelectric point measurements using a streaming potential technique was shown to give information on the extent of the Maillard reaction and the presence of hydrocolloids

    Electrical conductivity of carbon nanofiber reinforced resins: potentiality of Tunneling Atomic Force Microscopy (TUNA) technique

    Get PDF
    Epoxy nanocomposites able to meet pressing industrial requirements in the field of structural material have been developed and characterized. Tunneling Atomic Force Microscopy (TUNA), which is able to detect ultra-low currents ranging from 80 fA to 120 pA, was used to correlate the local topography with electrical properties of tetraglycidyl methylene dianiline (TGMDA) epoxy nanocomposites at low concentration of carbon nanofibers (CNFs) ranging from 0.05% up to 2% by wt. The results show the unique capability of TUNA technique in identifying conductive pathways in CNF/resins even without modifying the morphology with usual treatments employed to create electrical contacts to the ground

    Electrical conductivity of carbon nanofiber reinforced resins: Potentiality of Tunneling Atomic Force Microscopy (TUNA) technique

    Get PDF
    Epoxy nanocomposites able to meet pressing industrial requirements in the field of structural material have been developed and characterized. Tunneling Atomic Force Microscopy (TUNA), which is able to detect ultra-low currents ranging from 80 fA to 120 pA, was used to correlate the local topography with electrical properties of tetraglycidyl methylene dianiline (TGMDA) epoxy nanocomposites at low concentration of carbon nanofibers (CNFs) ranging from 0.05% up to 2% by wt. The results show the unique capability of TUNA technique in identifying conductive pathways in CNF/resins even without modifying the morphology with usual treatments employed to create electrical contacts to the ground

    Toughening of epoxy adhesives by combined interaction of carbon nanotubes and silsesquioxanes

    Get PDF
    The extensive use of adhesives in many structural applications in the transport industry and particularly in the aeronautic field is due to numerous advantages of bonded joints. However, still many researchers are working to enhance the mechanical properties and rheological performance of adhesives by using nanoadditives. In this study the effect of the addition of Multi-Wall Carbon Nanotubes (MWCNTs) with Polyhedral Oligomeric Silsesquioxane (POSS) compounds, either Glycidyl Oligomeric Silsesquioxanes (GPOSS) or DodecaPhenyl Oligomeric Silsesquioxanes (DPHPOSS) to Tetraglycidyl Methylene Dianiline (TGMDA) epoxy formulation, was investigated. The formulations contain neither a tougher matrix such as elastomers nor other additives typically used to provide a closer match in the coefficient of thermal expansion in order to discriminate only the effect of the addition of the above-mentioned components. Bonded aluminium single lap joints were made using both untreated and Chromic Acid Anodisation (CAA)-treated aluminium alloy T2024 adherends. The effects of the different chemical functionalities of POSS compounds, as well as the synergistic effect between the MWCNT and POSS combination on adhesion strength, were evaluated by viscosity measurement, tensile tests, Dynamic Mechanical Analysis (DMA), single lap joint shear strength tests, and morphological investigation. The best performance in the Lap Shear Strength (LSS) of the manufactured joints has been found for treated adherends bonded with epoxy adhesive containing MWCNTs and GPOSS. Carbon nanotubes have been found to play a very effective bridging function across the fracture surface of the bonded joints

    Erratum: Effect of Porosity and Crystallinity on 3D Printed PLA Properties. Polymers 2019, 11, 1487

    Get PDF
    The authors wish to make a change to the published paper [1]. In the original manuscript, there are mistakes on the scale bar of Figures 2 and 3. The unit of the scale bar should be “μm”, not “nm”. The corrected Figures 2 and 3 are presented below

    Final results of the second prospective AIEOP protocol for pediatric intracranial ependymoma

    Get PDF
    BACKGROUND: This prospective study stratified patients by surgical resection (complete = NED vs incomplete = ED) and centrally reviewed histology (World Health Organization [WHO] grade II vs III). METHODS: WHO grade II/NED patients received focal radiotherapy (RT) up to 59.4 Gy with 1.8 Gy/day. Grade III/NED received 4 courses of VEC (vincristine, etoposide, cyclophosphamide) after RT. ED patients received 1-4 VEC courses, second-look surgery, and 59.4 Gy followed by an 8-Gy boost in 2 fractions on still measurable residue. NED children aged 1-3 years with grade II tumors could receive 6 VEC courses alone. RESULTS: From January 2002 to December 2014, one hundred sixty consecutive children entered the protocol (median age, 4.9 y; males, 100). Follow-up was a median of 67 months. An infratentorial origin was identified in 110 cases. After surgery, 110 patients were NED, and 84 had grade III disease. Multiple resections were performed in 46/160 children (28.8%). A boost was given to 24/40 ED patients achieving progression-free survival (PFS) and overall survival (OS) rates of 58.1% and 68.7%, respectively, in this poor prognosis subgroup. For the whole series, 5-year PFS and OS rates were 65.4% and 81.1%, with no toxic deaths. On multivariable analysis, NED status and grade II were favorable for OS, and for PFS grade II remained favorable. CONCLUSIONS: In a multicenter collaboration, this trial accrued the highest number of patients published so far, and results are comparable to the best single-institution series. The RT boost, when feasible, seemed effective in improving prognosis. Even after multiple procedures, complete resection confirmed its prognostic strength, along with tumor grade. Biological parameters emerging in this series will be the object of future correlatives and reports

    Biotic, mineralogical, petrographic, and geomorphological characterization of the Falerno-Domitio shoreline (Campania region, southern Italy), with implication for environmental health studies: preliminary results

    Get PDF
    We report the first results of an ongoing study related to the project FARO (i.e. the Italian “Fund for original research projects”, granted by the Università di Napoli Federico II and IMI bank partner). This research project aims to the enhancement of the physical and biotic features of the coastal landscape related to the Falerno-Domitio shoreline, located in the mid-north coast of the Campania region (southern Italy), from the Garigliano river and Torregaveta. In the national scenario, this area can be considered as a valuable “natural laboratory”, for its wildlife (i.e. the Natural Reserve Foce Volturno, the Regional Park of Campi Flegrei, etc.), famous archaeological sites (i.e. Cuma excavations), and peculiar geological and volcanological characteristics (i.e. Phlegraean Fields). Unfortunately, it also suffers for a strong pollution and environmental degradation due to human activities. The research consists of a multidisciplinary analysis, mainly based on a bathymetric sensing, sampling of both the sea bottom sediments and the beach sands; it comprises: 1) integrated monitoring of the quality of environmental health through a biological study, 2) geomorphological and sedimentological analyses of the area and of the whole sample sets, with GIS data processing, 3) taxonomic and ecological analyses of selected benthic meiofauna assemblages, 4) mineralogy, petrography and geochemistry of beach sands along the shoreline, as well as of sea bottom samples. A complete sampling work of the beach sands, from the Garigliano estuary to the Cuma site, has been done, and the results of mineralogical, petrographic and chemical features, mainly in relation to major and trace elements data, as well as the granulometric curves, are presented. The ecologic and eco-toxicological studies are also carried out on selected samples, revealing the structure of meiofauna (benthic foraminifers and ostracods) assemblages. Tests on the occurrence of the bio-indicator organism Artemia salina have also performed, showing a relatively low toxicity of the samples analysed up to now. Preliminary bathymetric data are also presented

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore