47 research outputs found

    Design, formulation and sensory evaluation of a polyphenol-rich food placebo: an example of aronia juice for food intervention studies

    Get PDF
    Products suitable for use as controls in food interventions designed to demonstrate the role of minor components are largely lacking. In the present study, we aimed to develop a formulation to be used as a placebo in a clinical trial designed to assess the effects of aronia juice polyphenols on platelet function. Three formulations with the same nutrient composition as aronia juice were prepared by mixing various nutrients, artificial colours and flavours with water. The similarity of formulations to aronia juice in terms of taste, colour, smell and texture was assessed by six food panellists. The final placebo was tested for its impact on platelet function, biochemical and anthropometric parameters in a 4-week long study. No significant changes in platelet function, or in several cardiovascular and safety markers were recorded. Formulation suitable for use as a placebo for dietary intervention studies using aronia juice has been developed and demonstrated to be well tolerated in humans

    Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions

    Get PDF
    In the past two decades, a large number of studies have investigated the relationship between biodiversity and ecosystem functioning, most of which focussed on a limited set of ecosystem variables. The Jena Experiment was set up in 2002 to investigate the effects of plant diversity on element cycling and trophic interactions, using a multi-disciplinary approach. Here, we review the results of 15 years of research in the Jena Experiment, focussing on the effects of manipulating plant species richness and plant functional richness. With more than 85,000 measures taken from the plant diversity plots, the Jena Experiment has allowed answering fundamental questions important for functional biodiversity research. First, the question was how general the effect of plant species richness is, regarding the many different processes that take place in an ecosystem. About 45% of different types of ecosystem processes measured in the ‘main experiment’, where plant species richness ranged from 1 to 60 species, were significantly affected by plant species richness, providing strong support for the view that biodiversity is a significant driver of ecosystem functioning. Many measures were not saturating at the 60-species level, but increased linearly with the logarithm of species richness. There was, however, great variability in the strength of response among different processes. One striking pattern was that many processes, in particular belowground processes, took several years to respond to the manipulation of plant species richness, showing that biodiversity experiments have to be long-term, to distinguish trends from transitory patterns. In addition, the results from the Jena Experiment provide further evidence that diversity begets stability, for example stability against invasion of plant species, but unexpectedly some results also suggested the opposite, e.g. when plant communities experience severe perturbations or elevated resource availability. This highlights the need to revisit diversity–stability theory. Second, we explored whether individual plant species or individual plant functional groups, or biodiversity itself is more important for ecosystem functioning, in particular biomass production. We found strong effects of individual species and plant functional groups on biomass production, yet these effects mostly occurred in addition to, but not instead of, effects of plant species richness. Third, the Jena Experiment assessed the effect of diversity on multitrophic interactions. The diversity of most organisms responded positively to increases in plant species richness, and the effect was stronger for above- than for belowground organisms, and stronger for herbivores than for carnivores or detritivores. Thus, diversity begets diversity. In addition, the effect on organismic diversity was stronger than the effect on species abundances. Fourth, the Jena Experiment aimed to assess the effect of diversity on N, P and C cycling and the water balance of the plots, separating between element input into the ecosystem, element turnover, element stocks, and output from the ecosystem. While inputs were generally less affected by plant species richness, measures of element stocks, turnover and output were often positively affected by plant diversity, e.g. carbon storage strongly increased with increasing plant species richness. Variables of the N cycle responded less strongly to plant species richness than variables of the C cycle. Fifth, plant traits are often used to unravel mechanisms underlying the biodiversity–ecosystem functioning relationship. In the Jena Experiment, most investigated plant traits, both above- and belowground, were plastic and trait expression depended on plant diversity in a complex way, suggesting limitation to using database traits for linking plant traits to particular functions. Sixth, plant diversity effects on ecosystem processes are often caused by plant diversity effects on species interactions. Analyses in the Jena Experiment including structural equation modelling suggest complex interactions that changed with diversity, e.g. soil carbon storage and greenhouse gas emission were affected by changes in the composition and activity of the belowground microbial community. Manipulation experiments, in which particular organisms, e.g. belowground invertebrates, were excluded from plots in split-plot experiments, supported the important role of the biotic component for element and water fluxes. Seventh, the Jena Experiment aimed to put the results into the context of agricultural practices in managed grasslands. The effect of increasing plant species richness from 1 to 16 species on plant biomass was, in absolute terms, as strong as the effect of a more intensive grassland management, using fertiliser and increasing mowing frequency. Potential bioenergy production from high-diversity plots was similar to that of conventionally used energy crops. These results suggest that diverse ‘High Nature Value Grasslands’ are multifunctional and can deliver a range of ecosystem services including production-related services. A final task was to assess the importance of potential artefacts in biodiversity–ecosystem functioning relationships, caused by the weeding of the plant community to maintain plant species composition. While the effort (in hours) needed to weed a plot was often negatively related to plant species richness, species richness still affected the majority of ecosystem variables. Weeding also did not negatively affect monoculture performance; rather, monocultures deteriorated over time for a number of biological reasons, as shown in plant-soil feedback experiments. To summarize, the Jena Experiment has allowed for a comprehensive analysis of the functional role of biodiversity in an ecosystem. A main challenge for future biodiversity research is to increase our mechanistic understanding of why the magnitude of biodiversity effects differs among processes and contexts. It is likely that there will be no simple answer. For example, among the multitude of mechanisms suggested to underlie the positive plant species richness effect on biomass, some have received limited support in the Jena Experiment, such as vertical root niche partitioning. However, others could not be rejected in targeted analyses. Thus, from the current results in the Jena Experiment, it seems likely that the positive biodiversity effect results from several mechanisms acting simultaneously in more diverse communities, such as reduced pathogen attack, the presence of more plant growth promoting organisms, less seed limitation, and increased trait differences leading to complementarity in resource uptake. Distinguishing between different mechanisms requires careful testing of competing hypotheses. Biodiversity research has matured such that predictive approaches testing particular mechanisms are now possible

    Sandy coastlines under threat of erosion

    Get PDF
    Sandy beaches occupy more than one-third of the global coastline(1) and have high socioeconomic value related to recreation, tourism and ecosystem services(2). Beaches are the interface between land and ocean, providing coastal protection from marine storms and cyclones(3). However the presence of sandy beaches cannot be taken for granted, as they are under constant change, driven by meteorological(4,5), geological(6) and anthropogenic factors(1,7). A substantial proportion of the world's sandy coastline is already eroding(1,7), a situation that could be exacerbated by climate change(8,9). Here, we show that ambient trends in shoreline dynamics, combined with coastal recession driven by sea level rise, could result in the near extinction of almost half of the world's sandy beaches by the end of the century. Moderate GHG emission mitigation could prevent 40% of shoreline retreat. Projected shoreline dynamics are dominated by sea level rise for the majority of sandy beaches, but in certain regions the erosive trend is counteracted by accretive ambient shoreline changes; for example, in the Amazon, East and Southeast Asia and the north tropical Pacific. A substantial proportion of the threatened sandy shorelines are in densely populated areas, underlining the need for the design and implementation of effective adaptive measures. Erosion is a major problem facing sandy beaches that will probably worsen with climate change and sea-level rise. Half the world's beaches, many of which are in densely populated areas, could disappear by the end of the century under current trends; mitigation could lessen retreat by 40%.info:eu-repo/semantics/publishedVersio

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Sensor discovery in ambient IoT ecosystems

    No full text
    WOS: 000429249200018Heterogeneity represents a singular barrier to the cross-domain adoption of sensor networks, limiting the take-up of Ambient Intelligence. Historically, the preferred approach has been to adopt a middleware solution to mitigate the problems associated with heterogeneity. Normally, the sensor discovery process is tightly coupled to the middleware platform, resulting in a unique implementation for each platform. Such an approach is unsustainable given the speed of developments in sensing technologies and the increased deployment of networks of sensors and Internet-of-Things (IoT) devices. An alternative approach is to decouple the sensor discovery process from the middleware and to regard it a discrete service that could be harnessed by different middleware platforms and external IoT services. This paper presents the design and implementation of a generic discovery service framework-POrtable Discovery Services (PODS). PODS utilises existing middleware abstractions to support heterogeneity in so far as such abstractions relate to the discovery process. An evaluation of the framework is presented using an exemplar middleware platform.Science Foundation IrelandScience Foundation Ireland [07/CE/I1147]; Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [BIDEB-2219]This work is supported by Science Foundation Ireland under grant 07/CE/I1147 and the Scientific and Technological Research Council of Turkey (TUBITAK) under BIDEB-2219 Postdoctoral Research Programme

    Intelligent Sensing for Citizen Science Challenges and Future Directions

    No full text
    Interest in Citizen Science has grown significantly over the last decade. Much of this interest can be traced to the provision of sophisticated platforms that enable seamless collaboration, cooperation and coordination between professional and amateur scientists. In terms of field research, smart-phones have been widely adopted, automating data collection and enriching observations with photographs, sound recordings and GPS coordinates using embedded sensors hosted on the device itself. Interaction with external sensor platforms such as those normally used in the environmental monitoring domain is practically null-existent. Remedying this deficiency would have positive ramifications for both the professional and citizen science communities. To illustrate the relevant issues, this paper considers a common problem, that of data collection in sparse sensor networks, and proposes a practical solution that would enable citizen scientists act as Human Relays thus facilitating the collection of data from such networks. Broader issues necessary for enabling intelligent sensing using common smart-phones and embedded sensing technologies are then discussed

    Giving mobile devices a SIXTH sense: Introducing the SIXTH middleware for Augmented Reality applications

    No full text
    With the increasing availability of sensors within smartphones and within the world at large, a question arises about how this sensor data can be leveraged by Augmented Reality (AR) devices. AR devices have traditionally been limited by the capability of a given device's unique set of sensors. Connecting sensors from multiple devices using a Sensor Web could address this problem. Through leveraging this SensorWeb existing AR environments could be improved and new scenarios made possible, with devices that previously could not have being used as part of an AR environment. This paper proposes the use of SIXTH: a middleware designed to generate a Sensor Web, which allows a device to leverage heterogeneous external sensors within its environment to help facilitate the creation of richer AR experiences. This paper will present a worst case scenario, in which the device chosen will be a see-through, Android-based Head Mounted Display that has no access to sensors. This device is transformed into an AR device through the creation of a Sensor Web allowing it to sense its environment facilitated through the use of SIXTH

    Pervasive Sensing: Addressing the Heterogeneity Problem

    No full text
    Pervasive sensing is characterized by heterogeneity across a number of dimensions. This raises significant problems for those designing, implementing and deploying sensor networks, irrespective of application domain. Such problems include for example, issues of data provenance and integrity, security, and privacy amongst others. Thus engineering a network that is fit-for-purpose represents a significant challenge. In this paper, the issue of heterogeneity is explored from the perspective of those who seek to harness a pervasive sensing element in their applications. A initial solution is proposed based on the middleware construct

    Semantic Network Monitoring and Control over Heterogeneous Network Models and Protocols

    No full text
    To accommodate the proliferation of heterogeneous network models and protocols we propose the use of semantic technologies to enable an abstract treatment of networks. Network adapters are employed to lift network specific data into a semantic representation that is grounded in an upper level “NetCore” ontology. Semantic reasoning integrates the disparate network models and protocols into a common RDF-based data model that network applications can be written against without requiring intimate knowledge of the various low level-network details. The system permits the automatic discovery of new devices, the monitoring of device state and the invocation of device actions in a generic fashion that works across network types, including non-telecommunication networks such as social networks. A prototype system called SNoMAC is described that employs the proposed approach operating over UPnP, TR-069 and SIXTH network models and protocols. A major benefit of this approach is that the addition of new models/protocols requires relatively little effort and merely involves the development of a new network adapter based on an ontology grounded in NetCore
    corecore