209 research outputs found

    Development of pre and post-operative models to predict early recurrence of hepatocellular carcinoma after surgical resection

    Get PDF
    Background & Aims Resection is the most widely used potentially curative treatment for patients with early hepatocellular carcinoma (HCC). However, recurrence within 2 years occurs in 30–50% of patients, being the major cause of mortality. Herein, we describe 2 models, both based on widely available clinical data, which permit risk of early recurrence to be assessed before and after resection. Methods A total of 3,903 patients undergoing surgical resection with curative intent were recruited from 6 different centres. We built 2 models for early recurrence, 1 using preoperative and 1 using pre and post-operative data, which were internally validated in the Hong Kong cohort. The models were then externally validated in European, Chinese and US cohorts. We developed 2 online calculators to permit easy clinical application. Results Multivariable analysis identified male gender, large tumour size, multinodular tumour, high albumin-bilirubin (ALBI) grade and high serum alpha-fetoprotein as the key parameters related to early recurrence. Using these variables, a preoperative model (ERASL-pre) gave 3 risk strata for recurrence-free survival (RFS) in the entire cohort – low risk: 2-year RFS 64.8%, intermediate risk: 2-year RFS 42.5% and high risk: 2-year RFS 20.7%. Median survival in each stratum was similar between centres and the discrimination between the 3 strata was enhanced in the post-operative model (ERASL-post) which included 'microvascular invasion'. Conclusions Statistical models that can predict the risk of early HCC recurrence after resection have been developed, extensively validated and shown to be applicable in the international setting. Such models will be valuable in guiding surveillance follow-up and in the design of post-resection adjuvant therapy trials. Lay summary The most effective treatment of hepatocellular carcinoma is surgical removal of the tumour but there is often recurrence. In this large international study, we develop a statistical method that allows clinicians to estimate the risk of recurrence in an individual patient. This facility enhances communication with the patient about the likely success of the treatment and will help in designing clinical trials that aim to find drugs that decrease the risk of recurrence

    Genome-Wide and Differential Proteomic Analysis of Hepatitis B Virus and Aflatoxin B1 Related Hepatocellular Carcinoma in Guangxi, China

    Get PDF
    Both hepatitis B virus (HBV) and aflatoxin B1 (AFB1) exposure can cause liver damage as well as increase the probability of hepatocellular carcinoma (HCC). To investigate the underlying genetic changes that may influence development of HCC associated with HBV infection and AFB1 exposure, HCC patients were subdivided into 4 groups depending upon HBV and AFB1 exposure status: (HBV(+)/AFB1(+), HBV(+)/AFB1(-), HBV(-)/AFB1(+), HBV(-)/AFB1(-)). Genetic abnormalities and protein expression profiles were analyzed by array-based comparative genomic hybridization and isobaric tagging for quantitation. A total of 573 chromosomal aberrations (CNAs) including 184 increased and 389 decreased were detected in our study population. Twenty-five recurrently altered regions (RARs; chromosomal alterations observed in ≥10 patients) in chromosomes were identified. Loss of 4q13.3-q35.2, 13q12.1-q21.2 and gain of 7q11.2-q35 were observed with a higher frequency in the HBV(+)/AFB1(+), HBV(+)/AFB1(-) and HBV(-)/AFB1(+) groups compared to the HBV(-)/AFB(-) group. Loss of 8p12-p23.2 was associated with high TNM stage tumors (P = 0.038) and was an unfavorable prognostic factor for tumor-free survival (P=0.045). A total of 133 differentially expressed proteins were identified in iTRAQ proteomics analysis, 69 (51.8%) of which mapped within identified RARs. The most common biological processes affected by HBV and AFB1 status in HCC tumorigenesis were detoxification and drug metabolism pathways, antigen processing and anti-apoptosis pathways. Expression of AKR1B10 was increased significantly in the HBV(+)/AFB1(+) and HBV(-)/AFB1(+) groups. A significant correlation between the expression of AKR1B10 mRNA and protein levels as well as AKR1B10 copy number was observed, which suggest that AKR1B10 may play a role in AFB1-related hepatocarcinogenesis. In summary, a number of genetic and gene expression alterations were found to be associated with HBV and AFB1- related HCC. The possible synergistic effects of HBV and AFB1 in hepatocarcinogenesis warrant further investigations

    Relationship between a Novel Polymorphism of the C5L2 Gene and Coronary Artery Disease

    Get PDF
    C5L2 has been demonstrated to be a functional receptor of acylation-stimulating protein (ASP), which is a stimulator of triglyceride synthesis or glucose transport. However, little is known about the variations in the coding region of the C5L2 gene and their association with coronary artery disease (CAD). = 0.047, OR = 2.602, 95% CI: 1.015–6.671).The 698CT genotype of C5L2 may be a genetic maker of CAD in the Han and Uygur population in western China

    Orbital Evolution of Algol Binaries with a Circumbinary Disk

    Full text link
    It is generally thought that conservative mass transfer in Algol binaries causes their orbits to be wider, in which the less massive star overflows its Roche-lobe. The observed decrease in the orbital periods of some Algol binaries suggests orbital angular momentum loss during the binary evolution, and the magnetic braking mechanism is often invoked to explain the observed orbital shrinkage. Here we suggest an alternative explanation, assuming that a small fraction of the transferred mass forms a circumbinary disk, which extracts orbital angular momentum from the binary through tidal torques. We also perform numerical calculations of the evolution of Algol binaries with typical initial masses and orbital periods. The results indicate that, for reasonable input parameters, the circumbinary disk can significantly influence the orbital evolution, and cause the orbit to shrink on a sufficiently long timescale. Rapid mass transfer in Algol binaries with low mass ratios can also be accounted for in this scenario.Comment: 9 pages, 5 figures, accepted for publication in Ap

    Extracellular vesicles and their nucleic acids for biomarker discovery

    Get PDF
    Extracellular vesicles (EVs) are a heterogenous population of vesicles originate from cells. EVs are found in different biofluids and carry different macromolecules, including proteins, lipids, and nucleic acids, providing a snap shot of the parental cells at the time of release. EVs have the ability to transfer molecular cargoes to other cells and can initiate different physiological and pathological processes. Mounting lines of evidence demonstrated that EVs' cargo and machinery is affected in disease states, positioning EVs as potential sources for the discovery of novel biomarkers. In this review, we demonstrate a conceptual overview of the EV field with particular focus on their nucleic acid cargoes. Current knowledge of EV subtypes, nucleic acid cargo and pathophysiological roles are outlined, with emphasis placed on advantages against competing analytes. We review the utility of EVs and their nucleic acid cargoes as biomarkers and critically assess the newly available advances in the field of EV biomarkers and high throughput technologies. Challenges to achieving the diagnostic potential of EVs, including sample handling, EV isolation, methodological considerations, and bioassay reproducibility are discussed. Future implementation of ‘omics-based technologies and integration of systems biology approaches for the development of EV-based biomarkers and personalized medicine are also considered

    Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils

    Get PDF
    LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a ∼ 7 -tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for p p -chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the < 100     keV energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout

    Projected sensitivity of the LUX-ZEPLIN experiment to the two-neutrino and neutrinoless double beta decays of Xe-134

    Get PDF
    corecore