49 research outputs found

    Ferromagnetic ordering of linearly coordinated Co ions in LiSr2_2[CoN2_2]

    Get PDF
    LiSr2_2[CoN2_2] single crystals were successfully grown out of Li-rich flux. Temperature- and field-dependent measurements of the magnetization in the range of T=2−300T = 2 - 300 K and up to ÎŒ0H=7\mu_{0}\textit{H} = 7 T as well as measurements of the heat capacity are presented. Ferromagnetic ordering emerges below TC=44T_C = 44 K and comparatively large coercivity fields of ÎŒ0H=0.3\mu_0H = 0.3 T as well as pronounced anisotropy are observed upon cooling. Polycrystalline samples of the Ca analog LiCa2_2[CoN2_2] were obtained and investigated in a similar way. In both compounds Co manifests orbital contributions to the magnetic moment and large single-ion anisotropy that is caused by second-order Spin-orbit coupling. Quantum chemistry calculations reveal a magnetic anisotropy energy of 7 meV, twice as large as the values reported for similar Co d8d^{8} systems.Comment: 21 pages, 6 figures, 5 table

    Single crystal growth and anisotropic magnetic properties of Li2Sr[Li1 − xFexN]2

    Get PDF
    Up to now, investigation of physical properties of ternary and higher nitridometalates was severely hampered by challenges concerning phase purity and crystal size. Employing a modified lithium flux technique, we are now able to prepare sufficiently large single crystals of the highly air and moisture sensitive nitridoferrate Li2Sr[Li1−xFexN]2\rm Li_2Sr[Li_{1-x}Fe_xN]_2 for anisotropic magnetization measurements. The magnetic properties are most remarkable: large anisotropy and coercivity fields of 7 Tesla at T=2T = 2 K indicate a significant orbital contribution to the magnetic moment of iron. Altogether, the novel growth method opens a route towards interesting phases in the comparatively recent research field of nitridometalates and should be applicable to various other materials.Comment: 10 pages, 5 figures, published open access in Inorganics, minor typos correcte

    First Steps into Practical Engineering for Freshman Students Using MATLAB and LEGO Mindstorms Robots

    Get PDF
    Besides lectures on basic theoretical topics, contemporary teaching and learning concepts for first semester students give more and more consideration to practically motivated courses. In this context, a new first-year introductory course in practical engineering has been established in the first semester curriculum of Electrical Engineering at RWTH Aachen University, Germany. Based on a threefold learning concept, programming skills in MATLAB are taught to 309 students within a full-time block course laboratory. The students are encouraged to transfer known mathematical basics to program algorithms and real-world applications performed by 100 LEGO Mindstorms robots. A new MATLAB toolbox and twofold project tasks have been developed for this purpose by a small team of supervisors. The students are supervised by over 60 tutors at 23 institutes, and are encouraged to create their own robotics applications. We describe how the laboratory motivates the students to act and think like engineers and to solve real-world issues with limited resources. The evaluation results show that the proposed practical course concept successfully boosts students’ motivation, advances their programming skills, and encourages the peer learning process.

    An arithmetic Zariski pair of line arrangements with non-isomorphic fundamental group

    Get PDF
    In a previous work, the third named author found a combinatorics of line arrangements whose realizations live in the cyclotomic group of the fifth roots of unity and such that their non-complex-conjugate embedding are not topologically equivalent in the sense that they are not embedded in the same way in the complex projective plane. That work does not imply that the complements of the arrangements are not homeomorphic. In this work we prove that the fundamental groups of the complements are not isomorphic. It provides the first example of a pair of Galois-conjugate plane curves such that the fundamental groups of their complements are not isomorphic (despite the fact that they have isomorphic profinite completions)

    Ocean biogeochemical response to phytoplankton-light feedback in a global model

    Get PDF
    Oceanic phytoplankton, absorbing solar radiation, can influence the bio-optical properties of seawater and hence upper ocean physics. We include this process in a global ocean general circulation model (OGCM) coupled to a dynamic green ocean model (DGOM) based on multiple plankton functional types (PFT). We not only study the impact of this process on ocean physics but we also explore the biogeochemical response due to this biophysical feedback. The phytoplankton-light feedback (PLF) impacts the dynamics of the upper tropical and subtropical oceans. The change in circulation enhances both the vertical supply in the tropics and the lateral supply of nutrients from the tropics to the subtropics boosting the subtropical productivity by up to 60 gC m(-2) a(-1). Physical changes, due to the PLF, impact on light and nutrient availability causing shifts in the ocean ecosystems. In the extratropics, increased stratification favors calcifiers (by up to similar to 8%) at the expense of mixed phytoplankton. In the Southern Ocean, silicifiers increase their biomass (by up to similar to 10%) because of the combined alleviation of iron and light limitation. The PLF has a small effect globally on air-sea fluxes of carbon dioxide (CO2, 72 TmolC a(-1) outgassing) and oxygen (O-2, 46 TmolO(2) a(-1) ingassing) because changes in biogeochemical processes (primary production, biogenic calcification, and export production) highly vary regionally and can also oppose each other. From our study it emerges that the main impact of the PLF is an amplification of the seasonal cycle of physical and biogeochemical properties of the high-latitude oceans mostly driven by the amplification of the SST seasonal cycle

    Carbon isotope discrimination of arctic and boreal biomes inferred from remote atmospheric measurements and a biosphere-atmosphere model

    Get PDF
    Estimating discrimination against ^(13)C during photosynthesis at landscape, regional, and biome scales is difficult because of large-scale variability in plant stress, vegetation composition, and photosynthetic pathway. Here we present estimates of ^(13)C discrimination for northern biomes based on a biosphere-atmosphere model and on National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory and Institute of Arctic and Alpine Research remote flask measurements. With our inversion approach, we solved for three ecophysiological parameters of the northern biosphere (^(13)C discrimination, a net primary production light use efficiency, and a temperature sensitivity of heterotrophic respiration (a Q10 factor)) that provided a best fit between modeled and observed ή^(13)C and CO_2. In our analysis we attempted to explicitly correct for fossil fuel emissions, remote C4 ecosystem fluxes, ocean exchange, and isotopic disequilibria of terrestrial heterotrophic respiration caused by the Suess effect. We obtained a photosynthetic discrimination for arctic and boreal biomes between 19.0 and 19.6‰. Our inversion analysis suggests that Q10 and light use efficiency values that minimize the cost function covary. The optimal light use efficiency was 0.47 gC MJ^(−1) photosynthetically active radiation, and the optimal Q10 value was 1.52. Fossil fuel and ocean exchange contributed proportionally more to month-to-month changes in the atmospheric growth rate of ή^(13)C and CO_2 during winter months, suggesting that remote atmospheric observations during the summer may yield more precise estimates of the isotopic composition of the biosphere

    Route knowledge and configural knowledge in typical and atypical development: a comparison of sparse and rich environments

    Get PDF
    Background: Individuals with Down syndrome (DS) and individuals with Williams syndrome (WS) have poor navigation skills, which impact their potential to become independent. Two aspects of navigation were investigated in these groups, using virtual environments (VE): route knowledge (the ability to learn the way from A to B by following a fixed sequence of turns) and configural knowledge (knowledge of the spatial relationships between places within an environment). Methods: Typically developing (TD) children aged 5 to 11 years (N = 93), individuals with DS (N = 29) and individuals with WS (N = 20) were presented with a sparse and a rich VE grid maze. Within each maze, participants were asked to learn a route from A to B and a route from A to C before being asked to find a novel shortcut from B to C. Results: Performance was broadly similar across sparse and rich mazes. The majority of participants were able to learn novel routes, with poorest performance in the DS group, but the ability to find a shortcut, our measure of configural knowledge, was limited for all three groups. That is, 59 % TD participants successfully found a shortcut, compared to 10 % participants with DS and 35 % participants with WS. Differences in the underlying mechanisms associated with route knowledge and configural knowledge and in the developmental trajectories of performance across groups were observed. Only the TD participants walked a shorter distance in the last shortcut trial compared to the first, indicative of increased configural knowledge across trials. The DS group often used an alternative strategy to get from B to C, summing the two taught routes together. Conclusions: Our findings demonstrate impaired configural knowledge in DS and in WS, with the strongest deficit in DS. This suggests that these groups rely on a rigid route knowledge based method for navigating and as a result are likely to get lost easily. Route knowledge was also impaired in both DS and WS groups and was related to different underlying processes across all three groups. These are discussed with reference to limitations in attention and/or visuo-spatial processing in the atypical groups

    Marine and coastal ecosystem services on the science–policy–practice nexus: challenges and opportunities from 11 European case studies

    Get PDF
    We compared and contrasted 11 European case studies to identify challenges and opportunitiestoward the operationalization of marine and coastal ecosystem service (MCES) assessments inEurope. This work is the output of a panel convened by the Marine Working Group of theEcosystemServices Partnership in September 2016. TheMCES assessments were used to (1) addressmultiple policy objectives simultaneously, (2) interpret EU-wide policies to smaller scales and (3)inform local decision-making. Most of the studies did inform decision makers, but only in a fewcases, the outputswere applied or informed decision-making. Significant limitations among the 11assessments were the absence of shared understanding of the ES concept, data and knowledgegaps, difficulties in accounting for marine social–ecological systems complexity and partial stakeholderinvolvement. The findings of the expert panel call for continuous involvement of MCES ‘endusers’, integrated knowledge onmarine social–ecological systems, defining thresholds to MCES useand raising awareness to the general public. Such improvements at the intersection of science,policy and practice are essential starting points toward building a stronger science foundationsupporting management of European marine ecosystems
    corecore