178 research outputs found

    Improved impact performance of marine sandwich panels using through-thickness reinforcement: Experimental results

    Get PDF
    This paper presents results from a test developed to simulate the water impact (slamming) loading of sandwich boat structures. A weighted elastomer ball is dropped from increasing heights onto rigidly supported panels until damage is detected. Results from this test indicate that honeycomb core sandwich panels, the most widely used material for racing yacht hulls, start to damage due to core crushing at impact energies around 550 J. Sandwich panels of the same areal weight and with the same carbon/epoxy facings but using a novel foam core reinforced in the thickness direction with pultruded carbon fibre pins, do not show signs of damage until above 1200 J impact energy. This suggests that these will offer significantly improved resistance to wave impact. Quasi-static test results cannot be used to predict impact resistance here as the crush strength of the pinned foam is more sensitive to loading rate than that of the honeycomb core

    Nextet

    Full text link
    Program listing performers and works performed

    On the static and dynamic properties of flax and Cordenka epoxy composites

    Get PDF
    Fibre reinforced composites have excellent specific properties and are widely sought after by engineers seeking to reduce mass. However, end of life disposal is a significant problem and so research into more sustainable natural fibre composites is extremely topical. This paper examines the applicability of natural fibre composites for high performance structural applications. Woven flax and regenerated cellulose (Cordenka) textiles were pre-impregnated with commercially available epoxy resins and consolidated into test laminates in an autoclave to determine their static (compressive, tensile, flexural) and dynamic (energy absorption) properties. The range of compressive strengths was 77.5–299.6 MPa. Tensile strengths ranged from 63 to 92.6 MPa and interlaminar shear strength (ILSS) from 10.7 to 23.3 MPa. Specific energy absorption (SEA) varied between 21.2–34.2 kJ/kg. Biotex flax combined with MTM49 resin matched the SEA of T300 carbon fibre using the same resin system and layup. This work has demonstrated that natural fibre composites have significant scope for use in structural applications but additional work is required on fibre to matrix bonding in order to maximise their properties whilst remaining an environmentally credible option

    Diabetes and lipid screening among patients in primary care: A cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is associated with increased cardiovascular diseases and diabetes mellitus. Guidelines call for intensified glucose and lipid screening among overweight and obese patients. Data on compliance with these guidelines are scarce. The purpose of this study was to assess rates of diabetes and lipid screening in primary care according to demographic variables and weight status.</p> <p>Methods</p> <p>Over a 3-year follow-up period, we assessed screening rates for blood glucose, triglycerides, and HDL- and LDL-cholesterol among 5025 patients in primary care. From proportional hazards models we estimated screening rates among low, moderate, high, and very-high risk patients and compared them with recommendations of the American Diabetes Association (ADA), National Cholesterol Education Program (ATP III) and U.S. Preventive Services Task Force (USPSTF).</p> <p>Results</p> <p>Mean (SD) age was 47.4 (15.6); 69% were female, 21% were non-white, and 30% of males and 25% of females were obese (BMI ≥ 30 kg/m<sup>2</sup>). For both diabetes and lipid screening, the adjusted hazard was 260–330% higher among ≥65 than <35 year-olds, 50–90% higher in persons with BMI ≥ 35 than <25 kg/m<sup>2</sup>, 10–30% lower for females than males, and not lower among racial/ethnic minorities. Screening rates were at least 80% among very-high risk persons, which we defined as 55–64 years old, BMI ≥ 35 kg/m<sup>2</sup>, non-white, with baseline hypertension. In contrast, high-risk persons who were younger (35–44 years old) and less obese (BMI 30–<35 kg/m<sup>2</sup>) were screened less often (43% for LDL-cholesterol among females to 83% for diabetes among males) even though ADA, ATP III and USPSTF recommend diabetes and lipid screening among them.</p> <p>Conclusion</p> <p>Patients with higher BMI or age were more likely to be screened for cardiometabolic risk factors. Women were screened at lower rates than men. Even in a highly structured medical group practice, some obese patients were under-screened for diabetes and dyslipidemia.</p

    Pharmacokinetic/pharmacodynamic modelling approaches in paediatric infectious diseases and immunology.

    Get PDF
    Pharmacokinetic/pharmacodynamic (PKPD) modelling is used to describe and quantify dose-concentration-effect relationships. Within paediatric studies in infectious diseases and immunology these methods are often applied to developing guidance on appropriate dosing. In this paper, an introduction to the field of PKPD modelling is given, followed by a review of the PKPD studies that have been undertaken in paediatric infectious diseases and immunology. The main focus is on identifying the methodological approaches used to define the PKPD relationship in these studies. The major findings were that most studies of infectious diseases have developed a PK model and then used simulations to define a dose recommendation based on a pre-defined PD target, which may have been defined in adults or in vitro. For immunological studies much of the modelling has focused on either PK or PD, and since multiple drugs are usually used, delineating the relative contributions of each is challenging. The use of dynamical modelling of in vitro antibacterial studies, and paediatric HIV mechanistic PD models linked with the PK of all drugs, are emerging methods that should enhance PKPD-based recommendations in the future

    Domain formation in DODAB–cholesterol mixed systems monitored via nile red anisotropy

    Get PDF
    The effect of the cholesterol (Ch) on liposomes composed of the cationic lipid dioctadecyldimethylammonium bromide (DODAB) was assessed by studying both the steady-state and time-resolved fluorescence anisotropy of the dye Nile Red. The information obtained combined with analysis of the steady-state emission and luorescence lifetime of Nile Red (NR) for different cholesterol concentrations (5–50%) elucidated the presence of “condensed complexes” and cholesterol-rich domains in these mixed systems. The steady-state fluorescence spectra were decomposed into the sum of two lognormal emissions, emanating from two different states, and the effect of temperature on the anisotropy decay of Nile Red for different cholesterol concentrations was observed. At room temperature, the time-resolved anisotropy decays are indicative of NR being relatively immobile (manifest by a high r∞ value). At higher temperature, rotational times ca. 1 ns were obtained throughout and a trend in increasing hindrance was seen with increase of Ch content

    Strength variability of single flax fibres

    Get PDF
    Due to the typical large variability in the measured mechanical properties of flax fibres, they are often employed only in low grade composite applications. The present study aims to investigate the reasons for the variability in tensile properties of flax fibres. It is found that an inaccuracy in the determination of the cross-sectional area of the fibres is one major reason for the variability in properties. By applying a typical circular fibre area assumption, a considerable error is introduced into the calculated mechanical properties. Experimental data, together with a simple analytical model, are presented to show that the error is increased when the aspect ratio of the fibre cross-sectional shape is increased. A variability in properties due to the flax fibres themselves is found to originate from the distribution of defects along the fibres. Two distinctive types of stress–strain behaviours (linear and nonlinear) of the fibres are found to be correlated with the amount of defects. The linear stress–strain curves tend to show a higher tensile strength, a higher Young’s modulus, and a lower strain to failure than the nonlinear curves. Finally, the fibres are found to fracture by a complex microscale failure mechanism. Large fracture zones are governed by both surface and internal defects; and these cause cracks to propagate in the transverse and longitudinal directions

    Influence of soil type and natural Zn chelates on flax response, tensile properties and soil Zn availability

    Full text link
    A greenhouse experiment was conducted on weakly acidic and calcareous soils to evaluate the relative efficiencies of three natural Zn chelates [Zn-aminelignosulphonate (Zn-AML), Zn-polyhydroxyphenylcarboxylate (Zn-PHP) and Zn-S,S-ethylenediaminedisuccinate (Zn-S,S-EDDS)] applied to a crop textile flax (Linum ussitatisimum L.) at application rates of 0, 5 and 10 mg Zn kg−1. In the flax plant, the following parameters were determined: dry matter yield, soluble and total Zn concentrations in leaf and stem, chlorophyll, crude fibre, and tensile properties. For the different soil samples, the following parameters were determined: available Zn (DTPA-AB and Mehlich-3 extractable Zn), easily leachable Zn (BaCl2-extractable Zn), the distribution of Zn fractions, pH and redox potential. On the basis of the use of added Zn by flax, or Zn utilization, it would seem recommendable to apply Zn-S,S-EDDS at the low Zn rate in both soils. In contrast, adding the high Zn rate of this chelate to the weakly acidic soil produced an excessive Zn concentration in the plant, which caused a significant decrease in both dry matter yield and chlorophyll content. Furthermore, assessing available Zn with the DTPA-AB method proved the best way of estimating the level of excess Zn in flax plants. The soluble Zn concentration, which was established with 2-(N-morpholino)ethanesulfonic acid reagent (MES), of plant fresh and dry matter could be used as an alternative way of diagnosing the nutritional status of Zn in flax plants. In this experiment, the highest soil pHs were associated with the lowest redox potentials, which coincided with the smallest amounts of available Zn and water soluble Zn in soil, and the lowest levels of Zn uptake by flax plants
    corecore