786 research outputs found

    The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat

    Full text link
    We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle helium-3 adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig

    Self-monitoring of blood pressure in hypertension: A systematic review and individual patient data meta-analysis.

    Get PDF
    BACKGROUND: Self-monitoring of blood pressure (BP) appears to reduce BP in hypertension but important questions remain regarding effective implementation and which groups may benefit most. This individual patient data (IPD) meta-analysis was performed to better understand the effectiveness of BP self-monitoring to lower BP and control hypertension. METHODS AND FINDINGS: Medline, Embase, and the Cochrane Library were searched for randomised trials comparing self-monitoring to no self-monitoring in hypertensive patients (June 2016). Two reviewers independently assessed articles for eligibility and the authors of eligible trials were approached requesting IPD. Of 2,846 articles in the initial search, 36 were eligible. IPD were provided from 25 trials, including 1 unpublished study. Data for the primary outcomes-change in mean clinic or ambulatory BP and proportion controlled below target at 12 months-were available from 15/19 possible studies (7,138/8,292 [86%] of randomised participants). Overall, self-monitoring was associated with reduced clinic systolic blood pressure (sBP) compared to usual care at 12 months (-3.2 mmHg, [95% CI -4.9, -1.6 mmHg]). However, this effect was strongly influenced by the intensity of co-intervention ranging from no effect with self-monitoring alone (-1.0 mmHg [-3.3, 1.2]), to a 6.1 mmHg (-9.0, -3.2) reduction when monitoring was combined with intensive support. Self-monitoring was most effective in those with fewer antihypertensive medications and higher baseline sBP up to 170 mmHg. No differences in efficacy were seen by sex or by most comorbidities. Ambulatory BP data at 12 months were available from 4 trials (1,478 patients), which assessed self-monitoring with little or no co-intervention. There was no association between self-monitoring and either lower clinic or ambulatory sBP in this group (clinic -0.2 mmHg [-2.2, 1.8]; ambulatory 1.1 mmHg [-0.3, 2.5]). Results for diastolic blood pressure (dBP) were similar. The main limitation of this work was that significant heterogeneity remained. This was at least in part due to different inclusion criteria, self-monitoring regimes, and target BPs in included studies. CONCLUSIONS: Self-monitoring alone is not associated with lower BP or better control, but in conjunction with co-interventions (including systematic medication titration by doctors, pharmacists, or patients; education; or lifestyle counselling) leads to clinically significant BP reduction which persists for at least 12 months. The implementation of self-monitoring in hypertension should be accompanied by such co-interventions

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    450 d of Type II SN 2013ej in optical and near-infrared

    Get PDF
    We present optical and near-infrared photometric and spectroscopic observations of SN 2013ej, in galaxy M74, from 1 to 450 d after the explosion. SN 2013ej is a hydrogen-rich supernova, classified as a Type IIL due to its relatively fast decline following the initial peak. It has a relatively high peak luminosity (absolute magnitude MV_V = −17.6) but a small 56^{56}Ni production of ~0.023 M⊙_{\odot}. Its photospheric evolution is similar to other Type II SNe, with shallow absorption in the Hα_α profile typical for a Type IIL. During transition to the radioactive decay tail at ~100 d, we find the SN to grow bluer in B − V\textit{B − V} colour, in contrast to some other Type II supernovae. At late times, the bolometric light curve declined faster than expected from 56^{56}Co decay and we observed unusually broad and asymmetric nebular emission lines. Based on comparison of nebular emission lines most sensitive to the progenitor core mass, we find our observations are best matched to synthesized spectral models with a M\textit{M}ZAMS_{ZAMS} = 12–15 M⊙_{\odot} progenitor. The derived mass range is similar to but not higher than the mass estimated for Type IIP progenitors. This is against the idea that Type IIL are from more massive stars. Observations are consistent with the SN having a progenitor with a relatively low-mass envelope.The authors would like to thank Melissa Graham for scheduling the LCOGT observations. This paper is based on observations collected at the European Organization for Astronomical Research in the Southern hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO programme ID 188.D-3003. The paper is partially based on observations collected at Copernico and Schmidt telescopes (Asiago, Italy) of the INAF – Osservatorio Astronomico di Padova. Some observations have been obtained also with the 1.22 m telescope + B&C spectrograph operated in Asiago by the Department of Physics and Astronomy of the University of Padova. This paper is partly based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnologıa e Innovacion Productiva (Argentina), and Ministerio da Ciencia, Tecnologia e Inovacao (Brazil). This research was made possible through the use of the APASS, funded by the Robert Martin Ayers Sciences Fund. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. IRS was supported by the ARC Laureate Grant FL0992131. SB, AP, NER and GT are partially supported by the PRIN-INAF 2014 project ‘Transient Universe: unveiling new types of stellar explosions with PESSTO’. SSchulze acknowledges support from CONICYT-Chile FONDECYT 3140534, Basal-CATA PFB-06/2007, and Project IC120009 ‘Millennium Institute of Astrophysics (MAS)’ of Initiative Cientıfica Milenio del Ministerio de Economıa, Fomento y Turismo. This work was partly supported by the European Union FP7 programme through ERC grant number 320360. KM acknowledges support from the STFC through an Ernest Rutherford Fellowship. MS acknowledges support from STFC grant ST/L000679/1 and EU/FP7- ERC grant no. [615929]. AGY is supported by the EU/FP7 via ERC grant no. 307260, the Quantum Universe I- CORE Program by the Israeli Committee for Planning and Budgeting and the Israel Science Foundation (ISF); by Minerva and ISF grants; by the Weizmann-UK making connections programme; and by Kimmel and ARCHES awards.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stw141

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Regular use of aspirin and pancreatic cancer risk

    Get PDF
    BACKGROUND: Regular use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been consistently associated with reduced risk of colorectal cancer and adenoma, and there is some evidence for a protective effect for other types of cancer. As experimental studies reveal a possible role for NSAIDs is reducing the risk of pancreatic cancer, epidemiological studies examining similar associations in human populations become more important. METHODS: In this hospital-based case-control study, 194 patients with pancreatic cancer were compared to 582 age and sex-matched patients with non-neoplastic conditions to examine the association between aspirin use and risk of pancreatic cancer. All participants received medical services at the Roswell Park Cancer Institute in Buffalo, NY and completed a comprehensive epidemiologic questionnaire that included information on demographics, lifestyle factors and medical history as well as frequency and duration of aspirin use. Patients using at least one tablet per week for at least six months were classified as regular aspirin users. Unconditional logistic regression was used to compute crude and adjusted odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS: Pancreatic cancer risk in aspirin users was not changed relative to non-users (adjusted OR = 1.00; 95% CI 0.72–1.39). No significant change in risk was found in relation to greater frequency or prolonged duration of use, in the total sample or in either gender. CONCLUSIONS: These data suggest that regular aspirin use may not be associated with lower risk of pancreatic cancer

    Pain relief is associated with decreasing postural sway in patients with non-specific low back pain

    Get PDF
    Background Increased postural sway is well documented in patients suffering from non-specific low back pain, whereby a linear relationship between higher pain intensities and increasing postural sway has been described. No investigation has been conducted to evaluate whether this relationship is maintained if pain levels change in adults with non-specific low back pain. Methods Thirty-eight patients with non-specific low back pain and a matching number of healthy controls were enrolled. Postural sway was measured by three identical static bipedal standing tasks of 90 sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11). The patients received three manual interventions (e.g. manipulation, mobilization or soft tissue techniques) at 3-4 day intervals, postural sway measures were obtained at each occasion. Results A clinically relevant decrease of four NRS scores in associated with manual interventions correlated with a significant decrease in postural sway. In contrast, if no clinically relevant change in intensity occurred ([less than or equal to]1 level), postural sway remained similar compared to baseline. The postural sway measures obtained at follow-up sessions 2 and 3 associated with specific NRS level showed no significant differences compared to reference values for the same pain score. Conclusions Alterations in self-reported pain intensities are closely related to changes in postural sway. The previously reported linear relationship between the two variables is maintained as pain levels change. Pain interference appears responsible for the altered sway in pain sufferers. This underlines the clinical use of sway measures as an objective monitoring tool during treatment or rehabilitation

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore