824 research outputs found
On-chip stimulated Brillouin scattering and its applications
We review recent demonstration of stimulated Brillouin scattering in a chalcogenide photonic chip and its application to optical and microwave signal processing tasks. The interaction between light and sound via stimulated Brillouin scattering (SBS) was exploited in chalcogenide photonic circuits to achieve on-chip SBS slow and fast light, microwave photonic filters, and dynamic gratings using travelling-wave geometry. Using a ring-resonator geometry, photonic-chip based Brillouin laser was demonstrated. © 2013 SPIE
Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling technique
We demonstrate a direct, single measurement technique for characterizing the dispersion of a photonic crystal waveguide (PCWG) using a tapered fiber evanescent coupling method. A highly curved fiber taper is used to probe the Fabry-Pérot spectrum of a closed PCWG over a broad k-space range, and from this measurement the dispersive properties of the waveguide can be found. Waveguide propagation losses can also be estimated from measurements of closed waveguides with different lengths. The validity of this method is demonstrated by comparing the results obtained on a 'W1' PCWG in chalcogenide glass with numerical simulation. © 2008 Optical Society of America
A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa
Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by ~40° longitude (><4,000 km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55°E–140°W) since at least 1948, explaining more variance than anomalies associated with the El Niño-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Niño-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning
Impacts of climate change on plant diseases – opinions and trends
There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods
Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model
<p>Abstract</p> <p>Background</p> <p>The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC.</p> <p>Results</p> <p>We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides.</p> <p>Conclusions</p> <p>The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at <url>http://bordnerlab.org/RTA/</url>.</p
Organ transplantation from deceased donors with vaccine-induced thrombosis and thrombocytopenia
Vaccine-induced thrombosis and thrombocytopenia (VITT) may follow immunisation with the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2. Autoantibodies to platelet factor 4 (PF4) may mediate VITT through antibody-dependent platelet activation, though the underlying etiology is uncertain. Anti-PF4 antibodies are also seen in heparin-induced thrombocytopenia, though most cases of VITT do not have prior heparin exposure. More than 20 million people in the United Kingdom (UK) have received the ChAdOx1 nCoV-19 vaccine
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Design and methods for a cluster randomized trial of the Sunless Study: A skin cancer prevention intervention promoting sunless tanning among beach visitors
<p>Abstract</p> <p>Background</p> <p>Skin cancer is the most prevalent yet most preventable cancer in the US. While protecting oneself from ultraviolet radiation (UVR) can largely reduce risk, rates of unprotected sun exposure remain high. Because the desire to be tan often outweighs health concerns among sunbathers, very few interventions have been successful at reducing sunbathing behavior. Sunless tanning (self-tanners and spray tans), a method of achieving the suntanned look without UVR exposure, might be an effective supplement to prevention interventions.</p> <p>Methods and Design</p> <p>This cluster randomized trial will examine whether a beach-based intervention that promotes sunless tanning as a substitute for sunbathing and includes sun damage imaging and sun safety recommendations is superior to a questionnaire only control group in reducing sunbathing frequency. Female beach visitors (N = 250) will be recruited from 2 public beaches in eastern Massachusetts. Beach site will be the unit of randomization. Follow-up assessment will occur at the end of the summer (1-month following intervention) and 1 year later. The primary outcome is average sunbathing time per week. The study was designed to provide 90% power for detecting a difference of .70 hours between conditions (standard deviation of 2.0) at 1-year with an intra-cluster correlation coefficient of 0.01 and assuming a 25% rate of loss to follow-up. Secondary outcomes include frequency of sunburns, use of sunless tanning products, and sun protection behavior.</p> <p>Discussion</p> <p>Interventions might be improved by promoting behavioral substitutes for sun exposure, such as sunless tanners, that create a tanned look without exposure to UVR.</p> <p>Trial registration</p> <p>NCT00403377</p
Dopaminergic Influences on Emotional Decision Making in Euthymic Bipolar Patients
We recently reported that the D2/D3 agonist pramipexole may have pro-cognitive effects in euthymic patients with bipolar disorder (BPD); however, the emergence of impulse-control disorders has been documented in Parkinson\u27s disease (PD) after pramipexole treatment. Performance on reward-based tasks is altered in healthy subjects after a single dose of pramipexole, but its potential to induce abnormalities in BPD patients is unknown. We assessed reward-dependent decision making in euthymic BPD patients pre- and post 8 weeks of treatment with pramipexole or placebo by using the Iowa Gambling Task (IGT). The IGT requires subjects to choose among four card decks (two risky and two conservative) and is designed to promote learning to make advantageous (conservative) choices over time. Thirty-four BPD patients completed both assessments (18 placebo and 16 pramipexole). Baseline performance did not differ by treatment group (F = 0.63; p = 0.64); however, at week 8, BPD patients on pramipexole demonstrated a significantly greater tendency to make increasingly high-risk, high-reward choices across the five blocks, whereas the placebo group\u27s pattern was similar to that reported in healthy individuals (treatment x time x block interaction,
- …