99 research outputs found

    Main-Sequence and sub-giant stars in the Globular Cluster NGC6397: The complex evolution of the lithium abundance

    Full text link
    Thanks to the high multiplex and efficiency of Giraffe at the VLT we have been able for the first time to observe the Li I doublet in the Main Sequence (MS) stars of a Globular Cluster. At the same time we observed Li in a sample of Sub-Giant (SG) stars of the same B-V colour. Our final sample is composed of 84 SG stars and 79 MS stars. In spite of the fact that SG and MS span the same temperature range we find that the equivalent widths of the Li I doublet in SG stars are systematically larger than those in MS stars, suggesting a higher Li content among SG stars. This is confirmed by our quantitative analysis. We derived the effective temperatures, from Hα\alpha fitting, and NLTE Li abundances of the stars in our the sample, using 3D and 1D models. We find that SG stars have a mean Li abundance higher by 0.1dex than MS stars, using both 1D and 3D models. We also detect a positive slope of Li abundance with effective temperature. These results provide an unambiguous evidence that the Li abundance changes with evolutionary status. The physical mechanisms responsible for this behaviour are not yet clear, and none of the existing models seems to describe accurately these observations. Based on these conclusions, we believe that the cosmological lithium problem still remains an open question.Comment: Proceedings of the contributed talk presented at the IAU Symposium 26

    Discovery of a variable lead-rich hot subdwarf: UVO 0825+15

    Get PDF
    UVO 0825+15 is a hot bright helium-rich subdwarf which lies in K2 Field 5 and in a sample of intermediate helium-rich subdwarfs observed the Subaru High Dispersion Spectrograph. The K2 light curve shows low-amplitude variations, whilst the Subaru spectrum shows Pb IV absorption lines, indicative of a very high lead overabundance. UVO 0825+15 also has a high proper motion with kinematics typical for a thick disc star. Analyses of ultraviolet and intermediate dispersion optical spectra rule out a short-period binary companion and provide fundamental atmospheric parameters of Teff=38 900±270 K, logg/cms−2=5.97±0.11, log nHe/nH = −0.57 ± 0.01, EB − V ≈ 0.03, and angular radius Ξ = 1.062 ± 0.006 × 10−11 radians (formal errors). The high-resolution spectrum shows that carbon is \u3e2 dex subsolar, iron is approximately solar, and all other elements heavier than argon are at least 2–4 dex overabundant, including germanium, yttrium and lead. Approximately 150 lines in the blue-optical spectrum remain unidentified. The chemical structure of the photosphere is presumed to be determined by radiatively dominated diffusion. The K2 light curve shows a dominant period around 10.8 h, with a variable amplitude, its first harmonic, and another period at 13.3 h. The preferred explanation is multiperiodic non-radial oscillation due to g modes with very high radial order, although this presents difficulties for pulsation theory. Alternative explanations fail for lack of radial-velocity evidence. UVO 0825+15 represents the fourth member of a group of hot subdwarfs having helium-enriched photospheres and 3–4 dex overabundances of trans-iron elements and is the first lead-rich subdwarf to show evidence of pulsations

    Discovery of a variable lead-rich hot subdwarf: UVO 0825+15

    Get PDF
    UVO 0825+15 is a hot bright helium-rich subdwarf which lies in K2 Field 5 and in a sample of intermediate helium-rich subdwarfs observed the Subaru High Dispersion Spectrograph. The K2 light curve shows low-amplitude variations, whilst the Subaru spectrum shows Pb IV absorption lines, indicative of a very high lead overabundance. UVO 0825+15 also has a high proper motion with kinematics typical for a thick disc star. Analyses of ultraviolet and intermediate dispersion optical spectra rule out a short-period binary companion and provide fundamental atmospheric parameters of Teff=38 900±270 K, logg/cms−2=5.97±0.11, log nHe/nH = −0.57 ± 0.01, EB − V ≈ 0.03, and angular radius Ξ = 1.062 ± 0.006 × 10−11 radians (formal errors). The high-resolution spectrum shows that carbon is \u3e2 dex subsolar, iron is approximately solar, and all other elements heavier than argon are at least 2–4 dex overabundant, including germanium, yttrium and lead. Approximately 150 lines in the blue-optical spectrum remain unidentified. The chemical structure of the photosphere is presumed to be determined by radiatively dominated diffusion. The K2 light curve shows a dominant period around 10.8 h, with a variable amplitude, its first harmonic, and another period at 13.3 h. The preferred explanation is multiperiodic non-radial oscillation due to g modes with very high radial order, although this presents difficulties for pulsation theory. Alternative explanations fail for lack of radial-velocity evidence. UVO 0825+15 represents the fourth member of a group of hot subdwarfs having helium-enriched photospheres and 3–4 dex overabundances of trans-iron elements and is the first lead-rich subdwarf to show evidence of pulsations

    The binary properties of the pulsating subdwarf B eclipsing binary PG 1336-018 (NY Virginis)

    Get PDF
    Aims. We present an unbiased orbit solution and mass determination of the components of the eclipsing binary PG1336−018 as a critical test for the formation scenarios of subdwarf B stars. Methods. We obtained high-resolution time series VLT/UVES spectra and high-speed multicolour VLT/ULTRACAM photometric observations of PG1336−018, a rapidly pulsating subdwarf B star in a short period eclipsing binary. Results. Combining the radial velocity curve obtained from the VLT/UVES spectra with the VLT/ULTRACAM multicolour lightcurves, we determined numerical orbital solutions for this eclipsing binary. Due to the large number of free parameters and their strong correlations, no unique solution could be found, only families of solutions. We present three solutions of equal statistical significance, two of which are compatible with the primary having gone through a core He-flash and a common-envelope phase described by the α-formalism. These two models have an sdB primary of 0.466 M and 0.389 M, respectively. Finally, we report the detection of the Rossiter-McLaughlin effect for PG1336−018

    Evidence for the existence of powder sub-populations in micronized materials : Aerodynamic size-fractions of aerosolized powders possess distinct physicochemical properties

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Purpose: To investigate the agglomeration behaviour of the fine ( 12.8 ”m) particle fractions of salmeterol xinafoate (SX) and fluticasone propionate (FP) by isolating aerodynamic size fractions and characterising their physicochemical and re-dispersal properties. Methods: Aerodynamic fractionation was conducted using the Next Generation Impactor (NGI). Re-crystallized control particles, unfractionated and fractionated materials were characterized for particle size, morphology, crystallinity and surface energy. Re-dispersal of the particles was assessed using dry dispersion laser diffraction and NGI analysis. Results: Aerosolized SX and FP particles deposited in the NGI as agglomerates of consistent particle/agglomerate morphology. SX particles depositing on Stages 3 and 5 had higher total surface energy than unfractionated SX, with Stage 5 particles showing the greatest surface energy heterogeneity. FP fractions had comparable surface energy distributions and bulk crystallinity but differences in surface chemistry. SX fractions demonstrated higher bulk disorder than unfractionated and re-crystallized particles. Upon aerosolization, the fractions differed in their intrinsic emission and dispersion into a fine particle fraction (< 5.0 ”m). Conclusions: Micronized powders consisted of sub-populations of particles displaying distinct physicochemical and powder dispersal properties compared to the unfractionated bulk material. This may have implications for the efficiency of inhaled drug deliveryPeer reviewe

    Subaru and Swift observations of V652 Herculis: resolving the photospheric pulsation

    Get PDF
    High-resolution spectroscopy with the Subaru High Dispersion Spectrograph, and Swift ultraviolet photometry are presented for the pulsating extreme helium star V652 Her. Swift provides the best relative ultraviolet photometry obtained to date, but shows no direct evidence for a shock at ultraviolet or X-ray wavelengths. Subaru has provided high spectral and high temporal resolution spectroscopy over six pulsation cycles (and eight radius minima). These data have enabled a line-by-line analysis of the entire pulsation cycle and provided a description of the pulsating photosphere as a function of optical depth. They show that the photosphere is compressed radially by a factor of at least 2 at minimum radius, that the phase of radius minimum is a function of optical depth and the pulse speed through the photosphere is between 141 and 239 km s−1 (depending how measured) and at least 10 times the local sound speed. The strong acceleration at minimum radius is demonstrated in individual line profiles; those formed deepest in the photosphere show a jump discontinuity of over 70 kms−1 on a time-scale of 150 s. The pulse speed and line profile jumps imply a shock is present at minimum radius. These empirical results provide input for hydrodynamical modelling of the pulsation and hydrodynamical plus radiative transfer modelling of the dynamical spectra

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    Lithium in the Globular Cluster NGC 6397: Evidence for dependence on evolutionary status

    Full text link
    Most Globular Clusters are believed to host a single stellar populations. They can thus be considered a good place to study the Spite plateau and probe for possible evolutionary modifications of the Li content. We want to determine the Li content of subgiant (SG) and Main Sequence (MS) stars of the old, metal-poor globular cluster NGC 6397. This work was aimed not only at studying possible Li abundance variations but to investigate the cosmological Li discrepancy. Here, we present FLAMES/GIRAFFE observations of a sample of 84 SG and 79 MS stars in NGC 6397 selected in a narrow range of B-V colour and, therefore, effective temperatures. We determine both Teff and A(Li) using 3D hydrodynamical model atmospheres for all the MS and SG stars of the sample. We find a significant difference in the Li abundance between SG stars and MS stars, the SG stars having an A(Li) higher by almost 0.1 dex on average. We also find a decrease in the A(Li) with decreasing Teff, both in MS and SG stars, albeit with a significantly different slope for the two classes of stars. This suggests that the lithium abundance in these stars is, indeed, altered by some process, which is Teff-dependent. The Li abundance pattern observed in NGC 6397 is different from what is found among field stars, casting some doubt on the use of Globular Cluster stars as representative of Population II with respect to the Li abundance. None of the available theories of Li depletion appears to satisfactorily describe our observations.Comment: Accepted for publication in A&A Letters; new version with few correction

    A primordial star in the heart of the Lion

    Full text link
    Context: The discovery and chemical analysis of extremely metal-poor stars permit a better understanding of the star formation of the first generation of stars and of the Universe emerging from the Big Bang. aims: We report the study of a primordial star situated in the centre of the constellation Leo (SDSS J102915+172027). method: The star, selected from the low resolution-spectrum of the Sloan Digital Sky Survey, was observed at intermediate (with X-Shooter at VLT) and at high spectral resolution (with UVES at VLT). The stellar parameters were derived from the photometry. The standard spectroscopic analysis based on 1D ATLAS models was completed by applying 3D and non-LTE corrections. results: An iron abundance of [Fe/H]=--4.89 makes SDSS J102915+172927 one of the lowest [Fe/H] stars known. However, the absence of measurable C and N enhancements indicates that it has the lowest metallicity, Z<= 7.40x10^{-7} (metal-mass fraction), ever detected. No oxygen measurement was possible. conclusions: The discovery of SDSS J102915+172927 highlights that low-mass star formation occurred at metallicities lower than previously assumed. Even lower metallicity stars may yet be discovered, with a chemical composition closer to the composition of the primordial gas and of the first supernovae.Comment: To be published in A&
    • 

    corecore