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ABSTRACT

Aims. We present an unbiased orbit solution and mass determination of the components of the eclipsing binary PG 1336-018 as a

critical test for the formation scenarios of subdwarf B stars.

Methods. We obtained high-resolution time series VLT/UVES spectra and high-speed multicolour VLT/ULTRACAM photometric
observations of PG 1336—-018, a rapidly pulsating subdwarf B star in a short period eclipsing binary.

Results.

Combining the radial velocity curve obtained from the VLT/UVES spectra with the VLT/ULTRACAM multicolour

lightcurves, we determined numerical orbital solutions for this eclipsing binary. Due to the large number of free parameters and
their strong correlations, no unique solution could be found, only families of solutions. We present three solutions of equal statistical
significance, two of which are compatible with the primary having gone through a core He-flash and a common-envelope phase de-
scribed by the a-formalism. These two models have an sdB primary of 0.466 M, and 0.389 M., respectively. Finally, we report the

detection of the Rossiter-McLaughlin effect for PG 1336-018.

Key words. stars: subdwarfs — stars: binaries: eclipsing — stars: general — stars: variables: general — stars: oscillations —

stars: individual: PG 1336—018

1. Introduction

The subdwarf B (sdB) stars are generally acknowledged to
be core helium burning stars with a canonical mass of
approximately 0.5 M. Their thin, inert hydrogen envelope
(Meny £0.02 M) places them on the hot extension of the
Horizontal Branch (HB), the so-called Extreme Horizontal
Branch (EHB). Since the hydrogen envelope is too thin to sustain
nuclear burning, these stars will not go through the Asymptotic
Giant Branch and Planetary Nebula phases. Instead, when their
core helium has run out, they will enter a He-shell burning phase,
where they expand and heat up, making them appear as sdO stars
before they evolve directly onto the white dwarf cooling se-
quence. Even though the models describing the future evolution
of the sdB stars are generally accepted (e.g. those of Dorman
et al. 1993), the current evolutionary state of the sdB stars is still
poorly understood. The fact that sdB stars must have lost almost
all of their hydrogen layer at exactly the same time when the
helium core has attained the minimum mass required for the he-
lium flash to occur, makes them enigmatic from an evolutionary
point of view. To loose such an amount of mass, they must suffer
considerable mass loss during the red giant branch (RGB) phase,
and most probably also during the helium core flash. The most
fundamental missing piece to our understanding of the evolution

* Based on observations collected at the European Southern
Observatory, Chile. Program ID: 075.D-0174.

of the sdB stars, apart from the physics during the helium core
flash, is the nature and physics behind this mass loss (Fusi-Pecci
& Renzini 1976).

In recent years it has been discovered that a significant frac-
tion of sdBs are in binaries. Maxted et al. (2001) found that about
two-thirds of the sdB stars in the field are members of bina-
ries. Napiwotzki et al. (2004) found a binary fraction of 40%
among stars in the SPY (Supernova type Ia Progenitor) survey
sample, while Morales-Rueda et al. (2006) found 48% in a sam-
ple from the Edinburgh-Cape (EC) survey. Many of the binary
sdBs are found to be in short period systems with periods from
a few hours to several days, with companions being either white
dwarfs or M-dwarfs (Morales-Rueda et al. 2003). The peculiar
frequency of binarity has been an important constraint on evolu-
tionary population synthesis theory, and has led to the acknowl-
edgment that the binarity has to play a key role in the forma-
tion channels for sdB stars. There are several binary mechanisms
proposed by (Han et al. 2002, 2003, and references therein) as
formation channels for sdB stars:

1. common envelope ejection, leading to short-period binaries
with periods between 0.1 and 10 days and an sdB star with
a very thin hydrogen envelope, and with a mass distribution
that peaks sharply at 0.46 M. Depending on the secondary,
a main-sequence star or a white dwarf, the subchannels are
called the first CE ejection channel and the second CE ejec-
tion channel, respectively;
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2. stable Roche lobe overflow, resulting in similar masses as in
1. but with a rather thick hydrogen-rich envelope and longer
orbital periods between 10 and 100 days;

3. double helium white dwarf mergers giving rise to single
sdB stars with a wider distribution of masses.

Detailed investigation of sdB binaries is crucial in order to de-
termine their masses for comparison with the theoretically pro-
posed evolutionary channels. New momentum in the efforts to
resolve the evolutionary paths of sdB stars came a decade ago,
after the discovery that some of them pulsate (Kilkenny et al.
1997). This has opened up a new window into their interiors via
the techniques of asteroseismology and stimulated a burst of re-
search. Extensive search campaigns have revealed two classes of
pulsating sdB stars known as short period sdB variables (sdBV
or V361 Hya stars, formerly EC 14026 stars, after the proto-
type) and long period sdB variables known as PG 1716 stars (or
lpsdBV stars, Green et al. 2003).

The sdBV stars, discovered by Kilkenny et al. (1997) and in-
dependently theoretically predicted by Charpinet et al. (1996),
are low amplitude multimode pulsators with typical periods
ranging between 100—250s. Their pulsation amplitudes are gen-
erally of the order of a few hundredths of a magnitude. The short
periods, being of the order of and shorter than the radial funda-
mental mode for these stars, suggest that the observed modes
are low-order, low-degree p-modes (Charpinet et al. 2000). The
39 known sdBV stars occupy a region in the T.g—logg plane
with effective temperatures between 28 000 K and 36 000 K and
surface gravities (log g) between 5.2 and 6.2.

The detailed asteroseismological modelling of sdBV stars is
hampered by the fact that there are too few pulsational frequen-
cies to fit those predicted from non-rotating or rigidly rotating
models (Brassard et al. 2001; Charpinet et al. 2005; Randall et al.
2005). However, the observed frequency spectra are too dense to
be accounted for by only low-degree (£ < 2) modes. In order
to have a unique asteroseismological model we need to have ac-
curate pulsation frequencies and an unambiguous identification
of the modes of oscillation (spherical wavenumbers ¢ and m).
Thanks to multisite campaigns by the WET' devoted to resolv-
ing the frequency spectrum of sdBV stars in the last decade, we
do have extensive and reliable frequency lists for several sdBVs.
The problem lies in the second requirement mentioned above,
the unambiguous mode identification. There are only two ways
this can be achieved: through line profile variations (Aerts &
Eyer 2000) or the amplitude ratio method (Dupret et al. 2003;
Randall et al. 2005).

As sdBV stars are quite faint (the brightest one is mg = 11.8)
and their periods are very short, the line profile variation method
poses a real challenge considering the low S/N that accompa-
nies any high-resolution time-resolved spectroscopy, even with
the biggest telescopes available. Hence, the line profile varia-
tion method has not yet been reliably applied to any sdBV star.
The amplitude ratio method is not problem free either. Due to
the very low pulsational amplitudes, the photometric errors are
usually too large for unambiguous identification of the spherical
degree ¢ of the modes, especially to distinguish between £ = 0,
1 and 2 modes (Jeffery et al. 2005).

Among the binary sdB stars, four eclipsing sdB systems have
been discovered that all show a deep and strong reflection ef-
fect, with very short orbital periods in the rather narrow range of
130—170 min. Such short orbital periods imply that they must
have evolved through binary mass transfer and common en-
velope evolution. Out of these four systems, namely HW Vir

! http://wet.physics.iastate.edu/
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(Wood et al. 1993; Menzies & Marang 1986), NY Vir (Kilkenny
et al. 1998) (hereafter PG 1336—-018), HS 0705+6700 (Drechsel
et al. 2001) and HS 2231+2441 (@stensen et al. 2007), only
one system contains a rapidly pulsating sdB star as a primary:
PG 1336-018. As such, this system provides a natural labora-
tory for detailed evolutionary and asteroseismic analyses, which
is the purpose of our project.

PG 1336-018 was classified as an sdB star in the Palomar-
Green survey (Green et al. 1986) and shown to be a close
eclipsing binary with short-period multimode light variations
by Kilkenny et al. (1998). Assuming the primary mass to be
the canonical sdB mass of 0.5 M, Kilkenny et al. (1998) find
that the secondary must be a mid-M dwarf with a mass of
about 0.15 M. Soon after its discovery, PG 1336—018 was a tar-
get of two Whole Earth Telescope (WET) campaigns, Xcov 17
in April 1999 (Kilkenny et al. 2003) and Xcov 21 in April 2001.
These white light data resolved more than 20 frequencies in the
temporal spectrum (Kilkenny et al. 2003) in the range from 5000
to 8000 uHz. Even though the frequency content of the star is
thus known very precisely, an adequate asteroseismic model is
still lacking mainly due to the lack of an unambiguous mode
identification. The colour behaviour is needed for photomet-
ric mode identification to identify the spherical degree ¢ of the
modes and to discriminate between the numerous possible seis-
mic models. To further reduce the allowable seismic model space
we need to examine line profile variations due to the pulsa-
tions in order to disentangle the azimuthal wavenumber m. Only
with the accurate pulsation frequencies and an unambiguous
mode identification can the asteroseismology provide the accu-
rate mass estimate needed for confrontation with those predicted
from the formation scenarios for sdB stars.

PG 1336-018, being the only rapidly pulsating sdB star in
an eclipsing binary, is the only star with enough potential to
confront the proposed evolutionary scenarios, as the eclipses
help constrain the inclination and radii. Therefore we study
PG 1336-018, this time armed with new multicolour photomet-
ric and spectroscopic VLT data. In this paper we present the new
data and the orbital solution. This is the first step toward our ulti-
mate goal, an accurate mass determination of PG 1336018 and
a critical test of current stellar evolution theory.

2. Observations and data reduction
2.1. Photometry

PG 1336-018 (02000 = 13238148.2, 62000 =-02:01 249.0, my =
13.4) was observed on the night of May 18/19 2005 using the
ULTRACAM camera attached to the ESO VLT UT3 (Melipal) at
Paranal Observatory, Chile. ULTRACAM is a high-speed three-
channel CCD camera specifically designed for fast photometry
programmes (Dhillon & Marsh 2001). We gathered two full or-
bital cycles, about 5 h, of PG 1336—018 simultaneously in three
filters 1, g’ and u’ of the SDSS system (Fukugita et al. 1996).
The seeing (around 0.9 arcsec) was variable during the night
and getting worse toward the end of the run. The exposure time
was 0.5s in the beginning of the run, but due to poorer seeing
was increased to 1s to improve the S/N. This did not deterio-
rate our temporal resolution significantly, since the shortest pe-
riod found in PG 1336-018 is 97 s (Kilkenny et al. 2003). To
achieve 1 s time resolution, it was necessary to define 2 win-
dows on each of the 3 ULTRACAM chips. One window was
placed around PG1338-018, and another on a nearby compari-
son star. The dead-time of the observation was 24 ms.
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Fig.1. ULTRACAM/VLT " (upper), g’ (middle) and u’ (bottom) lightcurves of the eclipsing sdBV star PG 1336—018 from 2005 May 18/19.
The insets show enlarged sections of the two primary eclipses, where pulsations are clearly visible. The differences between the two consecutive
primary eclipses, apart from the noise, are due to the beating of the modes and different phases covered during the eclipse. The shape of the
u’ lightcurve is discussed in the text. The ordinate is the differential magnitude, and the abscissa is Fractional Julian Date.

All data frames were reduced using the ULTRACAM
pipeline reduction software (Dhillon & Marsh 2001). Care was
taken to select the most optimal choices offered in the reduc-
tion software. The “normal” extraction method with the “vari-
able” aperture sizes, as they track local changes in the seeing
disk, gave the best results. Several apertures were tried out and
an aperture of 1.7 times the FWHM gave the highest S/N for »’
and g’ band. The star counts were divided by the comparison star
counts and converted to obtain a differential magnitude (V—-C) in
each filter. As both the target and the comparison star were in the
same field, differential photometry accounted well for the vari-
ations in the sky transparency and extinction in »’ and g’ band.
Unfortunately, the only comparison star within ULTRACAM’s
2.6 arcmin field of view on the VLT is very faint in the blue,
resulting in poorer differential photometry in the ' compared
to the ' and ¢’ band. Therefore, a wider aperture had to be
used for the ©’ band. Due to the faintness of the comparison star
in u’, its g’ band lightcurve was used to make the differential
u’ lightcurve. This gave a satisfactory result in the sense that
both the pulsations and the eclipses were recovered, but it in-
troduced an unreliable slope in the first part of the u’ lightcurve
(see Fig. 1). Therefore, we did not rely on the u’ lightcurve for
the orbital analysis. However, we did use the second part of the
u’ lightcurve to cross-check our results, as well as for the fre-
quency analysis (see Sect. 4.2).

The times in the data frames were converted to JD and
barycentrically corrected. Differential (V — C) lightcurves for #/,
g’ and u’ were constructed from a set of more than 80000 sci-
ence frames. The /, g’ and u’ lightcurves are plotted in Fig. 1,
where we can see a clear sign of the pulsations of the primary
component in all the phases of the binary orbit, even during the
primary eclipse. A strong reflection-like effect (0.2 mag in ¢’
and 0.25 mag in r’) is evident. This effect, characteristic of all
binary systems containing an sdB star and a cool M-dwarf com-
panion in rotationally locked orbit, is due to the high contrast in
the temperatures between the heated and unheated hemispheres
of the M-dwarf.

2.2. Spectroscopy

Even though PG 1336-018 was a target of several photomet-
ric campaigns, its faintness relative to the rapid oscillations
has prevented any reasonably good time-resolved spectroscopy.
The short pulsation periods require very short integration times.
There were two attempt so far with the aim of detecting the pul-
sational radial velocities (Woolf et al. 2003) and identification
of the pulsation modes from the wavelength dependency of the
amplitudes (Dreizler et al. 2000), both with a null result.

A time-series of 399 high resolution spectra were taken over
a period of ~9h, covering about 3.7 full orbits, on the night of
April 28, 2005 using the Ultraviolet Visual Echelle Spectrograph
(UVES) on the VLT UT2 (Kueyen) at the Paranal Observatory,
Chile. Only the blue arm was used, with wavelength coverage
from 3900 to 5000 A, and the slit width of 1 arcsec at a resolution
of 46 890. Each spectrum was integrated for 45 s which, with the
ultra fast read-out of about 23 s we used, gave a time resolution
of 68 s. Dome flat-fields and bias calibration frames were taken
at the beginning and at the end of the night, and ThAr exposures
were taken before and after the run.

Due to the very low signal we got for such a short expo-
sure and the ultra fast read-out mode used, the UVES reduction
pipeline did not give satisfactory results. Therefore, we devel-
oped a non-standard reduction method, using the ESO-MIDAS
package. This provided a factor of ~2 increase in the S/N ratio of
the reduced spectra, compared to those produced by the pipeline.
The bias calibration frames had an offset between the upper and
the lower part, due to the ultra fast read-out mode used. After
careful examination of each bias frame, we proceeded as fol-
lows. First we examined the interorder space of each science
frame (by taking the median of the box) to determine these off-
sets which were then subtracted from the science frames. Then
the science frame was corrected for cosmic rays, extracted and
background corrected (which was smoothed to reduce the noise).
Since, in our case, the sky background contributes most to the
noise, we used optimal extraction which gave better S/N, as sug-
gested by Mukai (1990). Then the science frames were flat-field



608

N T T T T T

110 g

1.00

0.90

0.80 B
0.70 | B
0.60 | B
0.50 | B

Normalised flux

1.10 | b
1.00
0.90
0.80
0.70
0.60
0.50

Relative intensity

3800 4000 4200 4400 4600 4800
Wavelength

Fig.2. A typical single UVES/VLT spectrum of PG 1336—018 from
our VLT run on 2005 April 28 (fop) and the coadded spectrum (bot-
tom), produced by combining all the 399 available spectra after shifting
according to the orbital radial velocity solution. The Balmer lines are
indicated together with the helium lines used for the determination of
physical parameters. Discontinuities due to imperfect merging of spec-
tral orders only become evident in the high-S/N combined spectrum.

corrected, wavelength calibrated and, finally, the orders were
merged. Since the spectra were oversampled we have rebinned
them in an optimal way such that the S/N increased without
compromising the resolution. Finally, the science frames were
normalized.

A typical individual spectrum of PG 1336—018 is shown in
the top panel of Fig. 2. The bottom panel of Fig. 2 shows the
coadded orbit-corrected spectrum (see Sect. 4.1). Despite our
extensive effort to achieve the optimal reduction scheme, the ex-
traction and merging of the orders is not perfect. This is due
to the fact that the Echelle order discontinuities do not behave
“consistently” under a low signal. This leads to some jumps and
wiggles seen in the continuum of the coadded spectrum and par-
ticularly in the red wing of H,. For this reason we did not make
use of this line in the merged spectrum for the spectroscopic pa-
rameter determination discussed below.

In the blue wavelength range covered by our data no sign
of any spectral feature from the cool companion can be seen,
confirming the results of Woolf et al. (2003). Due to the large
difference in effective temperatures (about a factor of 10, see
Sect. 4) the hot sdBV star dominates the spectrum even in the
primary eclipse.

3. RV determination

Our spectra allow us to produce a radial velocity (RV) curve,
with an excellent phase coverage, from which we can indepen-
dently determine the orbital period (P) and semi-amplitude (K;)
of this eclipsing binary. As we are dealing with alow S/N, we de-
termined RVs from the spectra trying out several different meth-
ods. The best results were obtained by using molly- a software
package, which fits two Gaussian profiles to the Balmer line pro-
files®. This allows good treatment of both the broad wings and
the sharper core at the same time. This gave better results than
any of the other methods we have tried.

We have measured the RVs of the highest S/N lines in
the spectrum, namely Hc, Hs, H, and Hg, using this package.

2 http://deneb.astro.warwick.ac.uk/phsaap/software/
molly/html/INDEX.html
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75 T T T T T

50

25

50 F

Radial Velocity [km/s]

75 b

-100

-125 F

-150 L L L L L
-0.5 -0.25 0 0.25 0.5

Phase

Fig. 4. The radial velocity measurements (average of the H., Hs, H,
and Hg lines) of all the individual UVES/VLT spectra. The best fit orbit
solution from PHOEBE is also shown.

A sample fit is shown in Fig. 3 for an individual spectrum. The
FWHM of the two Gaussian fits, as well as their heights, were
treated as a free parameter at first, but were kept fixed once the
best fit values were found. We checked carefully if the RV from
the H, line deviated from the one of the other Balmer lines, due
to the discontinuity in its red wing. This turned out not to be
the case (see also Fig. 3) so we kept the H, RV values in our
analysis.

Finally, the average of each RV measurement, using He, Hj,
H, and Hg lines, was determined. These radial velocity values
for each of the 399 individual spectra (with the errors), are shown
in Fig. 4 together with the best fit orbital solution (see Sect. 4).

To perform an independent determination of the orbit from
our spectroscopic data, and to verify the photometric ephemeris,
the measured RVs (after barycentric correction of the velocities
and the mid-exposure times) were subjected to a periodogram
analysis. A sinusoidal fit using Period04 (Lenz & Breger 2004)
gives the frequency 114.25+0.1 uHz and the semi-amplitude
78.6 +£0.6kms~! which is, considering our poor frequency res-
olution of about 30 uHz, in a good agreement with the orbital
period P = 0.101015999d calculated by Kilkenny et al. (2000)
as well as with the values derived from PHOEBE in Sect. 4. The
semi-amplitude of the velocity variation is in good agreement
with the 78 + 3kms~! estimated by Kilkenny et al. (1998) (see
their Table 4) even though they reported the semi-amplitudes of
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Table 1. Fixed parameters in the search for the orbital solution of
PG 1336-018.

Parameter  Value

to 2450223.36134 d°
P 0.101015999 a4
Tem1 31300K

Ter> 3000 K?

g1 1.0

Ay 1.0

x1 (g) 0.217

x1 (1) 0.178

@ Ephemeris taken from Kilkenny et al. (2000). * T, was kept fixed as
it is poorly constrained by the data, see the text for details.

all of their observations (see their Table 3) to range from 47 + 4
to 79 +4kms~!. The semi-amplitude we obtained is somewhat
larger than estimated by Woolf et al. (2003), 64 + 1kms™!, but
their data cover only 1.4 orbits and contain a gap which probably
resulted in an underestimated value.

As our data set suffers from a baseline too short for reliable
ephemeris determination, we adopted the ephemeris obtained by
Kilkenny et al. (2000) (see Table 1).

Since the system is single-lined and the orbit is assumed to
be circular, the analysis of the RV curve is straightforward. The
mass function calculated from the semi-amplitude and the period
gives:

F(M) = 0.0051 + 0.0001 M,.

4. Orbital parameters

In order to investigate the pulsational properties of
PG 1336-018, the subject of a follow-up paper, the orbital
variations due to the binarity must be removed from the ob-
served lightcurve. However, in order to find the best orbital
solution for this eclipsing binary system, the pulsations of the
sdB primary must be removed as well. This is a non-trivial
coupled problem. The determination of the orbital parame-
ters of this system required to understand and evaluate the
temporal spectrum of the primary sdB pulsator. In order to
achieve this, we followed an iterative procedure, using all the
information about the target we have. Once we find a reliable
orbital solution, we subtract it from the lightcurves. Then we
use the orbit subtracted lightcurves to extract the pulsation
frequencies present in our data. We prewhiten the original
observed lightcurves with these frequencies. The prewhitened
lightcurves are then used as input to find the second iteration
orbital solution.

4.1. Fundamental parameters

Our high resolution VLT/UVES spectra allow us to improve the
spectroscopic parameters determined by Kilkenny et al. (1998).
Using our RV solution (see Fig. 4), we shifted the spectra and
added them together to improve the S/N. The coadded orbit-
subtracted spectrum is shown in the bottom panel of Fig. 2.

For the model fitting procedure, we used the LTE models
of Heber et al. (2000). The model spectra were convolved
with a Gaussian instrumental profile of 0.25 A and rotationally
broadened (assuming tidally locked rotation) with a vsini of
74.2kms™!. This produces a model spectrum with line cores that
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Fig. 5. Our spectroscopic model fit to the mean spectrum in Fig. 2. The
best fit model spectrum has been plotted on top of the observed spec-
trum as a smooth curve. Note that the Hy line was kept out of the fit
due to its proximity to an echelle order discontinuity.

reproduce the observed spectrum excellently for all lines that
are unaffected by Echelle order discontinuities. Unfortunately,
while the fit to the cores is good, the wings are not well fitted.
Our best simultaneous fit for effective temperature, gravity and
helium abundance yields:

Ter = 31300 250K
logg = 5.60 + 0.05 dex
logy = —2.93 £ 0.05 dex.

The quoted errors are about five times larger than the formal fit-
ting errors reported in Fig. 5. Although such 50 errors would
normally be quite conservative considering the resolution and
signal of the combined spectrum, there are obvious problems.
The effects of errors due to the Echelle extraction problems de-
scribed earlier are hard to quantify. The effective temperature is
well constrained by the depth of the high order Balmer lines, and
the helium abundance is determined by the depth of the narrow
He1 lines (marked in Figs. 2 and 5), which are not much affected
by the Echelle extraction problems. However, since the Echelle
order discontinuities strongly affect the wings of the lines, which
are essential for the gravity determination, we cannot exclude a
large error on log g. For this reason, we will only use the effective
temperature determination as a constraint for our orbital fitting
procedure, and not log g. Indeed, as we will see later, such a low
log g is inconsistent with any realistic mass-radius relationship
that can be derived from the orbit by at least 0.15 dex. In order
to rule out other causes for the inconsistent log gdetermination
from the average spectrum, we tried to fit it using NLTE
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atmosphere models, enhanced metallicity models, or changing
the assumed rotational velocity broadening. All these attempts
produced negligible changes to the derived parameters listed
above.

4.2. Binarity and pulsation

Numerical orbit solutions were investigated using the PHOEBE
package tool (Pr$a & Zwitter 2005) which incorporates the as-
pects of the Wilson-Devinney (WD) code (Wilson & Devinney
1971). The WD approach uses differential correction (DC) as
the minimization method, which is in essence a linearised least
squares method. The code was used in the mode for detached bi-
naries with no constraints on the stellar potentials. No third light
or spots were included.

The ULTRACAM/VLT ¢’ and r lightcurves and the
RV measurements obtained from the UVES/VLT spectra were
solved simultaneously to yield a consistent model fit. As
PHOEBE is limited by the number of points (currently the limit
is 9000 points) we had to phase bin our ULTRACAM/VLT
lightcurves into 4000 data points per lightcurve.

The major problem in finding the orbital solution of any bi-
nary system is not only the fact that there are many free param-
eters (12 + 5n, where n is the number of lightcurves in different
filters), but also that the parameters are correlated. Some of these
correlations are severe, especially between the mass ratio ¢ and
the potential of the secondary star €, (see the discussion be-
low in Sect. 4.3). Hence, one is left with several formal families
of solutions within the parameter space. We must then confine
the range of possible solutions by reducing the number of free
parameters. The only safe way to do this is by considering the
boundary conditions set by the data themselves and by sound
theoretical considerations.

The parameters that were assumed and kept fixed in our anal-
ysis were fy, P, Te of the primary, gravity darkening coefficients
both for the primary g; and the secondary g,, bolometric albedo
of the primary A; and the limb darkening coefficients of the pri-
mary in the two filters x| (¢’, r’). For the gravity darkening co-
efficients we adopted values of 1.0 for the primary (radiative en-
velope) and 0.32 for the secondary (convective envelope). We
assumed a circular orbit (¢ = 0) and synchronized rotation with
the orbit.

The effective temperature of the primary T.q; was set to
the value derived from our spectra (see Sect. 4.1). The effec-
tive temperature previously estimated by Kilkenny et al. (1998,
Tt = 33000 = 1000) was used as well, but, as it did not in-
fluence the derived parameters except for the luminosity of the
stars, we fixed the temperature to the value derived by our new
data. The Tes, of the secondary has a very low contribution to
the total flux (see Sect. 2) and, therefore, is not tightly con-
strained. An appropriate treatment of the effective temperature
of the secondary in the case where the hot sdB primary is heat-
ing the cool secondary is not trivial, as the temperature on the
illuminated hemisphere can be as much as five times higher than
on the non-illuminated one (Zola 2000). Whilst we did not in-
tend to fix the effective temperature of the secondary star at first,
we have found that leaving it as an adjustable parameter does
not give consistent results. With T, as a free parameter, it con-
verges to around 4000 K for the g’ lightcurve, but to only 2700 K
for the r’-band lightcurve. As a reasonable compromise for T,
we choose to fix it to 3000 K. Considering the fact that the con-
tribution of the secondary to the total flux is negligible, this is
not an obstacle.

As there are no published limb darkening coefficients for
sdB stars we calculated the limb darkening coefficients x; (¢’, ¥’
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and u’) for a “typical” sdB star from a fully line-blanketed
LTE model atmosphere (Behara & Jeffery 2006) with T =
30000K, logg = 5.5, Vi = Skm s~ and solar abundances
(a linear cosine law was used). The mean limb darkening coeffi-
cients in each filter were computed by convolving the ULTRACAM
efficiencies in each filter with the monochromatic limb dark-
ening coeflicients and the stellar fluxes. We also computed the
orbital solution using an extrapolation of previously reported
coefficients from the tables of Wade & Rucinski (1985) and
Al-Naimiy (1978), as well as the values fixed at 0.25 (V)
and 0.20 (R) (Kilkenny et al. 1998). This did not change the solu-
tion, so we adopted the coefficients we computed from a modern
atmosphere model. Table 1 summarises the values of the fixed
parameters. The surface gravity is not a free parameter obtained
by PHOEBE, since it is defined by the mass and radius.

Using the ephemeris given in Kilkenny et al. (2000) we find a
phase shift of 0.00374+0.00006 d. This phase shift could in prin-
ciple be due to timing errors in our data rather than to an intrinsic
change in the system. However, we carefully checked timings in
our data sets and, moreover, we have data from two different in-
struments which both show the same phase shift. A timing error
is therefore very unlikely to be the cause of the measured shift.
A change inherent to the system is thus the most probable rea-
son. With only two minima timings we cannot draw any further
conclusion here, only emphasise the need for further epoch ob-
servations. A similar period change on the order of 0.003 d over
a period of 6 years in the HW Vir system was documented by
Kilkenny et al. (2000).

The strong pulsations in the lightcurves are obstructing the
fine tuning of the orbit, as the pulsations are seen as scatter by
PHOEBE. Therefore, we take the first iteration solution and sub-
tract it from the lightcurves. Now, after the dominant parts of
the periodicity, i.e. the eclipses, have been removed from the
lightcurves we can analyse them in order to take out the pul-
sations of the primary from the lightcurves.

A Fourier amplitude spectrum was calculated for each or-
bit subtracted lightcurve to deduce the periodicities present in
the data. The short timespan of our photometric data confines
us with a frequency resolution of 54 uHz. Since we are unable
to resolve many of the closely spaced frequencies in the spec-
trum published by Kilkenny et al. (2003), we cannot use their
peaks. We can only remove the periodicities we observe in our
data in order to improve our orbit solution, after verifying that
the frequencies we detect are indeed in the range of known
PG 1336-018 frequencies.

After identifying the highest amplitude peak in the spectrum
and cross-checking if this frequency is present in the previous
data sets within our frequency resolution, we remove this peak
from the data by subtracting a sine wave (with the frequency,
amplitude and phase determined by a non-linear least-squares
fit-NLLS) from the original lightcurves. We calculate the Fourier
amplitude spectrum of the prewhitened residuals and repeat the
procedure until no new peaks could be securely identified. In
this way we are able to remove four frequencies, as listed in
Table 2. The frequency spectrum of PG 1336—-018 is compli-
cated as there are many frequencies in a narrow frequency range,
which are unresolved in our data set. Therefore the NLLS would
not converge on a simultaneous fit to more than four frequencies,
even though there is still significant power left in the Fourier
spectrum. That is also the reason why the amplitudes appear
higher in our data set compared to the ones seen in Kilkenny
et al. (2003) as several frequencies are blended into one. The
highest amplitude frequency in our data set at 5430.1 yHz is
most probably the result of seven unresolved closely spaced
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Table 2. The list of frequencies, periods, amplitudes and phases we detected and prewhitened our data with. The phase is given as the time of

maximum amplitude since 7.

Frequency  Period Amplitude Phase (Tnax)
[1Hz] [s] [mma] [s]
g r u g r u
5430.1 184.16  11.2(1) 10.5(1) 17.1(2) 142.3(3) 142.2(3) 141.4(4)
5579.9 179.21 3.8(1) 3.7(1) 3.5(2) 105.9(8) 105.8(8) 115(2)
5757.3 173.69 1.7(1) 1.7(1) 2.8(2) 148(2) 147(2) 155(2)
7076.7 141.31 2.0(1) 1.9(1) 3.0(2) 105(1) 106(1) 107(2)

Table 3. System parameters of the three best model fits to RV data and
lightcurves of PG 1336—018. The formal 1o error on the last digit of
each parameter is given in parentheses.

Free parameter Model I Model I  Model III
alRs] 0.723(5) 0.764(5)  0.795(5)
g 0.282(2) 0.262(2) 0.250(2)
i[°’] 80.67(8) 80.67(8)  80.67(8)
Q,  5.5003) 5.48(3) 5.47(3)
Q, 2.77(1) 2.68(1) 2.62(1)
A, 0.92(3) 0.92(3) 0.93(3)
x2(g")  0.38(8) 0.39(8) 0.38(8)
x (r')  0.88(8) 0.89(8) 0.89(8)
Derived parameters:
M, [Ms]  0.389(5) 0.466(6)  0.530(7)
M, [Ms] 0.110(1) 0.122(1)  0.133(2)
Ri [Ro]  0.14(1) 0.15(1) 0.15(1)
Ry [Ro]  0.15(1) 0.16(1) 0.16(1)
logg: [cm/s?]  5.74(5) 5.77(6) 5.79(7)
log g, [cm/s?]  5.14(5) 5.14(5) 5.14(5)
Roche radii: [in units of orbital separation]
r1 (pole) 0.191 0.191 0.191
ry (point) 0.193 0.193 0.193
ry (side) 0.192 0.192 0.192
r1 (back) 0.193 0.193 0.193
r, (pole) 0.198 0.197 0.197
r, (point) 0.213 0.215 0.216
r, (side) 0.201 0.201 0.201
r, (back) 0.210 0.211 0.211
Errors on residuals:
o(g’) [mag] 0.03055 0.03054  0.03057
o(r) [mag] 0.01325  0.01321 0.01321
o(RV) [kms™!] 8.39 8.39 8.39

frequencies f3, f1, f>s, fi0, f5, f7 and f»» from Table 4 of
Kilkenny et al. (2003).

These prewhitened lightcurves were then phase binned and,
together with the RV curve, fed into PHOEBE to search for the
improved orbit solution. Even though residual pulsations are still
clearly visible in the lightcurves, their amplitudes are now signif-
icantly smaller, which allows us to obtain a more reliable (sec-
ond iteration) orbit solution. A third iteration step turns out to
be unnecessary, as it does not improve the final outcome of the
orbital parameters.

As a quantitative measure of the goodness-of-fit we use the
1o deviation for each data set (¢’, ¥’ and RV) from the simul-
taneously calculated synthetic curves. The bigger 1o deviation
in ¢’ is due to the higher amplitudes of the oscillations in this
colour. While it is impossible to see the depth of the local min-
ima found by the DC method, and therefore search for the global
minimum of the parameter hyperspace, we tested the stability
of the convergent solutions found by parameter kicking (Prsa
& Zwitter 2005). Once convergence was reached, we manually
kicked the parameters and the minimization was restarted from

the displaced points. In this way we found three groups of so-
lutions of equal goodness-of-fit. Table 3 gives the three best fit
orbital solutions. It is not possible to decide which solution is
the correct one based on the numerical considerations as the syn-
thetic curves are fitting the data equally well for all three models.
The errors given in the table are the formal errors of the fit which
are likely smaller than the true errors due to the above mentioned
correlation between the parameters. The synthetic lightcurve fits
to the observed data points are presented in Figs. 4, 6 and 7
(solid line) together with their residuals. The synthetic g’ and
r’ lightcurves and the RV curve are plotted for only one solu-
tion (Model II) since the deviations between the three solutions
cannot be resolved at the scale of the figure.

4.3. Discussion

The uniqueness of a given solution is jeopardized by the param-
eter correlations. In particular, there is a strong correlation be-
tween the mass ratio g and the potential of the secondary star ;.
Therefore, there is a ¢ degeneracy in all the orbital solutions. For
a given range of potentials defined by the Lagrangian point, a
family of solutions with corresponding mass ratios is found. The
solutions found in Table 3 represent the local minima shown in
Fig. 8.

The relative radii and the orbital inclination are tightly con-
strained by the depth and the width of the eclipses, and the
results in all three models are nearly identical. There is only
a slight distortion of the secondary: r,(pole)/r(point) is 0.93,
0.92, 0.91 respectively for each model. While the previous
searches for the best orbital solutions (Kilkenny et al. 1998;
Drechsel et al. 2001, and references therein) tend to resort to
non-physical albedos (greater that 1 in some cases) and limb
darkening coefficients of the secondary, we find that the biggest
problem is in the temperature of the secondary which is heated
by the hot subdwarf. The weakest point of all modelling proce-
dures lies in an inadequate treatment of the temperature of the
secondary star. The temperature distribution over the surface of
the secondary has to be incorporated in the atmosphere models
used by PHOEBE in order to get more realistic solutions. This is
far beyond the scope of our current paper.

The surface gravity derived from the orbital solutions, al-
though in agreement with the value previously estimated by
Kilkenny et al. (1998, logg = 5.7 + 0.1 dex) is higher than the
spectroscopic gravity estimate. Therefore, we have explored the
full range of mass-radius ranges for the primary allowed by
the orbital solution and the spectroscopic gravity (Fig. 9). The
parameters used to generate this orbital solution mass-radius re-
lationship are only the P, i, K| and the radius of the primary
in terms a, none of which are affected by the g degeneracy.
Thus, if we had a sufficiently accurate spectroscopic determina-
tion of log g, we could use the relationships in Fig. 9 to determine
one unique M;. Unfortunately, our spectroscopic logg of 5.6 is
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Fig. 6. The ULTRACAM/VLT ¢’ lightcurve together with the synthetic orbit solution. The middle panel shows the residuals of the orbit subtraction.
Pulsations during the eclipses are now clearly visible, and we can see that the amplitude is smaller during the primary eclipse than during the
secondary as only the part of the surface is visible. The bottom panel shows the residuals after prewhitening with the four strongest oscillation

modes.

clearly much lower than what can realistically be accepted since
it gives a mass for the primary that is far too low (M < 0.2 My).

While we cannot discriminate between the three model fits
on the basis of their o values, the evolutionary scenarios for
sdB stars disqualify the Model III solution as the primary mass
would be too high for a core He-flash (Han et al. 2002). Models I
and II however, are both possible as they could have formed
through common envelope phase (Hu et al., submitted to A&A).

5. Detection of the Rossiter-McLaughlin effect

In Fig. 4, an apparent up-and-down (redshift-blueshift) shift oc-
curs at phase zero in the RV curve. This effect at the eclipse is
known as the Rossiter-McLaughlin (RM) effect (Rossiter 1924;
McLaughlin 1924). It is due to the selective blocking of the
light of the rotating star during an eclipse. When the secondary
star covers the blueshifted (redshifted) half of the stellar disk,
the integrated light of the primary appears slightly redshifted
(blueshifted). Because of this selective blocking of the stellar
surface during the eclipse, a skewed line profile is created. This
change in line profile shape results in a shift in RV, which in turn
results in the redshift-blueshift distortion seen during the eclipse
(see Fig. 4). The RM effect has been seen in other eclipsing hot
subdwarf binaries (e.g. AA Dor: Rauch & Werner 2003) and can
be used to investigate the rotational properties of the compo-
nent stars. It was recently used in extrasolar planetary transits
(Queloz et al. 2000; Ohta et al. 2005; Giménez 2006; Gaudi &
Winn 2007) to discriminate between different migration theo-
ries. The amplitude of the effect mainly depends on the projected
rotation velocity of the star, the ratio of stellar radii, the orbital
inclination, and the limb darkening.

To analyze this effect we have subtracted the orbital solution
(solid curve in Fig. 4) from the RV measurements. The orbit-
subtracted RV residuals, phase binned in 50 bins, are plotted in
Fig. 10. The RM effect is clearly seen in these residuals. We
used the analytical description of this effect given in Giménez
(2006) to simulate the RM effect for this system. We have as-
sumed that the rotational axis of the primary star is co-aligned
with the perpendicular to the orbital plane. The result of this
simulation is plotted as a solid line in Fig. 10. The equatorial ro-
tational velocity of the star was set to 75.2kms™! and the ratio
of the stellar radii r,/ry, the inclination of the orbit i and the ra-
dius of the primary relative to the size of the orbit r; were taken
from our orbital solution (see Table 3). The synthetic curve fits
the observed RM amplitude rather well. The uncertainties on the
residual RV curve are too large to fine-tune the orbital parame-
ters. We can only establish that the observed RM effect is com-
patible with the orbital solutions given in Table 3 and represents
an independent confirmation of the light curve solution.

The apparent asymmetry seen in Fig. 10 is, however, not well
explained. Such an asymmetry is expected to occur if the pro-
jected orbital and rotational axes are not aligned. This is highly
unlikely for the narrow orbit of PG 1336—-018. Nevertheless, we
simulated the RM effect allowing different angles of the rotation
axes and the orbital axes. We indeed could not achieve satisfac-
tory results, because, when the zero offset was fitted well, the
amplitudes were highly asymmetrical and vice versa. The asym-
metry is more likely caused by the pulsations seen during the
primary eclipse, which also give rise in line profile shape vari-
ations. The equations describing the RM effect assume that the
components are spherical, i.e. they do not take into account any
deviation from spherical symmetry such as the one produced by
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filters (o(¢g’) and o (1)).

the pulsations. We will investigate this further in our follow-up
paper dedicated to the analysis of the primary’s pulsations.

6. Conclusions and future work

In this work, we presented a thorough observational analy-
sis of the orbital behavior of the pulsating eclipsing binary
PG 1336-018. Our goal was to avoid using a canonical mass
of 0.5 My, for the subdwarf in any interpretation of the luminos-
ity variations of the star, as has been done so far in the liter-
ature.Instead, we attempted an unbiased derivation of the sys-
tem and stellar parameters, in particular for the masses of the

- - g o -
S§ - . & o " «,%Q

R,/Rg
0.14 0.18

0.12

0.1

0.2 0.3 0.4
M, /Mg

0.5 0.6

Fig. 9. Mass-radius diagram for PG 1336—018 showing the regions per-
mitted by the orbit solution (continuous line) and by the different sur-
face gravities (dotted lines). The ¢ values are also noted on the orbit
solution. The small changes from the 30 error on K; do not shift the
curve representing the orbital solution.

components. Our analysis resulted in three equally probable sets
of orbital and physical parameters of the system. Our model III
solution is incompatible with the binary having gone through a
core He-flash and a common-envelope phase described by the
a-formalism since that can only lead to PG 1336—018 like bi-
naries with primary masses up to 0.48 M (Hu et al., submitted
to A&A). This leaves us with two solutions, one with a primary
mass of 0.466 =+ 0.006 M and another with 0.389 + 0.005 M,
with secondary masses of 0.122+0.001 My and 0.110+0.001 M
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of the RM effect with the parameters given in the text.

respectively. We thus conclude that our solutions with M; =
0.466 + 0.006 M, and M; = 0.389 + 0.005 M, are the only
plausible ones, except when the common-envelope phase would
be better described by the y-formalism (Nelemans et al. 2000;
Nelemans & Tout 2005). In this case all three solutions are ac-
ceptable, as this formalism allows non-degenerate helium igni-
tion with a broader primary mass range (0.3—0.8 M).

Furthermore, we have detected the RM effect in the radial
velocity curve of PG 1336—-018. The simulated amplitude of the
RM effect is in the accordance with the RM amplitude seen in
the RV residuals, which is an independent confirmation of the
results obtained from our orbital solution.

While deriving the orbital solution for PG 1336—-018, we hit
upon the limitation of current binary analysis codes, which also
prevented us to pinpoint the effective temperature of the sec-
ondary. None of the analysis methods available in the literature
treat the atmosphere of such a close binary, in which one com-
ponent is so hot that it induces a temperature gradient across
the surface of the other, in an appropriate way. Indeed, all codes
make use of stellar atmosphere models which assume one fixed
effective temperature at the surface of each of the component
stars. As such, any derived quantities, such as limb darkening
coefficients and albedos, cannot be but a very crude approxima-
tion of reality whenever one component is seriously heated by
the other one. In the case of close binaries like PG 1336-018,
i.e. with a hot primary and a cold secondary, the temperature
of the latter changes so drastically from the illuminated side to
the backside, that specific atmosphere models representing such
a situation should be computed and used while deriving the or-
bital parameters. This is an entire project by itself and surely
beyond the scope of our current work. We hope that our results
will give rise to future developments of atmosphere models with
temperatures varying across the surface of the cool component
in close binaries. The case of PG 1336—018, and our data of the
star, are ideally suited to test such new future models.

In a follow-up paper of this work, we plan to analyse
the oscillatory signal in our multicolour photometry and high-
resolution spectroscopy, after the orbit subtraction presented
here. This will be done by computing a cross-correlation func-
tion of each spectrum and investigating the signature of the
modes in it. Cross-correlation functions have already been used
to study the character of oscillations modes before, see e.g.
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Mathias & Aerts (1996) for the 6 Scuti star 20 CVn and Hekker
et al. (2006) for solar-like oscillations in red giants. This is done
by computing line diagnostics, such as moments, and the ampli-
tude and phase across the profile, and comparing these to predic-
tions based on the theory of non-radial oscillations. In principle,
this allows us to identify the spherical wavenumbers (¢, m) of the
strongest modes. The use of these established mode identifica-
tion techniques (see e.g. Briquet & Aerts 2003; Zima 2006, for
the latest versions) on high-resolution cross-correlation profiles
of pulsating sdB stars has so far not yet been done. The nature of
our data and of our target star requires a simulation study to test
the effects of smearing out the oscillations over the cycle and of
the limited time base. Also, we must treat the data during and
outside the eclipses separately in order to assess the effective-
ness of the techniques in the specific case of PG 1336—-018. Such
a study is currently being performed. The ultimate goal of it is
to identify the highest-amplitude modes and discriminate among
the plausible seismic models of the star. This will then eventu-
ally lead us to derive a seismic mass estimate to be confronted
with the observed primary masses presented here and with the
evolutionary masses computed by Hu et al. (submitted to A&A).
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