

University of Birmingham

Microservice transition and its granularity problem:
A systematic mapping study
Hassan, Sara; Bahsoon, Rami; Kazman, Rick

DOI:
10.1002/spe.v50.9

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Hassan, S, Bahsoon, R & Kazman, R 2020, 'Microservice transition and its granularity problem: A systematic
mapping study', Software: Practice and Experience, vol. 50, no. 9, pp. 1651-1681.
https://doi.org/10.1002/spe.v50.9

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 11. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/426749569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1002/spe.v50.9
https://doi.org/10.1002/spe.v50.9
https://research.birmingham.ac.uk/portal/en/publications/microservice-transition-and-its-granularity-problem-a-systematic-mapping-study(6f53ec58-b89a-45fd-ae4d-aefb0236a867).html

Received: 19 February 2020 Revised: 16 May 2020 Accepted: 17 May 2020

DOI: 10.1002/spe.2869

S U R V E Y PA P E R

Microservice transition and its granularity problem: A
systematic mapping study

Sara Hassan1 Rami Bahsoon1 Rick Kazman2,3

1School of Computer Science, University
of Birminhgam, West Midlands, UK
2Software Engineering Institute
(SEI)/CMU, Pittsburgh, Pennsylvania,
USA
3University of Hawaii, Honolulu, Hawaii,
USA

Correspondence
Sara Hassan, Jeddah 2142, KSA.
Email: ssh195@cs.bham.ac.uk

Summary
Microservices have gained wide recognition and acceptance in software indus-
tries as an emerging architectural style for autonomic, scalable, and more
reliable computing. The transition to microservices has been highly motivated
by the need for better alignment of technical design decisions with improving
value potentials of architectures. Despite microservices’ popularity, research still
lacks disciplined understanding of transition and consensus on the principles
and activities underlying that transition. In this paper, we report on a systematic
mapping study that consolidates various views, approaches and activities that
commonly assist in the transition to microservices. The study aims to provide a
better understanding of the transition; it also contributes a working definition of
the transition and technical activities underlying it. We term the transition and
technical activities leading to microservice architectures as microservitization.
We then shed light on a fundamental problem of microservitization: microser-
vice granularity and reasoning about its adaptation as first-class entities. This
study reviews state-of-the-art and -practice related to reasoning about microser-
vice granularity; it reviews modeling approaches, aspects considered, guidelines
and processes used to reason about microservice granularity. This study iden-
tifies opportunities for future research and development related to reasoning
about microservice granularity.

K E Y W O R D S

design decision support, granularity, microservices, software economics, systematic mapping study

1 INTRODUCTION

Several industries have migrated their applications (or actively considering migrating) to microservices.1-3 The transi-
tion to microservices has not been purely driven by technical objectives; the transition requires careful alignment of the
technical design decisions with the business ones. The ultimate objective of this alignment is to enhance utilities of the
application’s software architecture and to improve its value potentials. For example, among the technical design decisions
is isolating business functionalities into microservices that interact through standardized interfaces. Isolation motivated
only by technical objectives can lead to aggressive decomposition of functionalities favouring service autonomy without
considering its impact on value potentials. However, isolation motivated by technical and business objectives can be more

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Software: Practice and Experience published by John Wiley & Sons, Ltd.

Softw: Pract Exper. 2020;50:1651–1681. wileyonlinelibrary.com/journal/spe 1651

https://orcid.org/0000-0001-7481-0434
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.2869&domain=pdf&date_stamp=2020-06-25

1652 HASSAN et al.

informed. It can enhance utilities such as autonomy, replaceability, and decentralized governance (among other utilities)
to improve the microservice architecture’s ability in coping with operation, maintenance, and evolution uncertainties.
Ultimately, this can also relate to improved maintenance costs and cost-effective quality of service (QoS) provision to end
users; these are examples of improved value potentials in the architecture.

Due to the recency of microservices, they have a multitude of definitions; each definition captures different prop-
erties of microservices. Definitions mostly agree that the fundamental properties of microservices include enabling
facilitated improvement of component characteristics—autonomy, replaceability, independent deployability—and of
architectural characteristics—improved reliability, scalability, resilience to failure, availability, and evolvability.4-6 In
essence, these definitions capture some drivers of the transition to microservices aimed at enhancing utility in
the application’s software architecture. The utility enhanced through the transition can render benefits that can
cross-cut architectural design, testing, maintenance and service management.7 For example, microservice autonomy
allows the architects to easily locate, implement, and test necessary service amendments.3 Microservice replaceability
allows architects to confidently and independently add and/or manage new business functionalities over the system
lifetime.3

The transition to microservices can help the application in better meeting its QoS requirements; this may consequently
result into improved compliance with service level agreements for QoS, potential economics gains, and better alignment
with the business objectives of microservice adopters.3 Because of their “micro” character, microservices can be mobilized
to the benefit of several service-oriented applications that can require “lighter weight” processing (eg, mobile services and
Internet-of-Things [IoT]).3

Despite the industrial push toward microservices, there is no disciplined understanding of their transition nor con-
sensus on the principles and activities underlying the transition.8 A disciplined understanding of the transition is of
paramount importance to inform and/or to justify its technical activities by aligning them with their added value and
cost. Currently however, the state-of-the-practice in microservice adoption lacks appropriate methods and techniques that
can justify value added of technical design decisions. For example, the software architect can be equipped with mecha-
nisms and tools that can enhance replaceability by standardizing the communication paradigms across microservices.9,10

Reasoning about the added value and possible cost becomes essential to justify this technical design decision regarding
communication paradigms.

This paper is an attempt for a better understanding of the transition to microservices. It conducts a sys-
tematic mapping study to consolidate various views about microservices; it then uses the study results to con-
tribute to a well-rounded working definition describing the transition and technical activities of the transition to
microservice architectures. We term the transition and technical activities leading to microservice architectures as
microservitization.

This working definition has explicitly considered a fundamental problem of microservitization: reasoning about
the granularity of a microservice (ie, whether a microservice should be decomposed/merged further or not). A gran-
ularity level determines “the service size and the scope of functionality a service exposes (p. 426 of Reference 11).”
Granularity adaptation entails merging or decomposing microservices thereby moving to a finer or more coarse grained
granularity level.

Determining the granularity level too early in the software architecture’s lifetime can lead to problems in reasoning
about microservices.12,13 This problem is of significance both in brownfield and greenfield development.1 In both fields, a
suitable granularity level is paramount to inform choosing concrete services from a plethora of commercial-off-the-shelf
(COTS) microservices. Conducting a systematic mapping study to examine microservice literature is therefore essential
to inform the paramount exercise of reasoning about granularity.

In this paper, we consider that “a systematic mapping study allows the evidence in a domain to be plotted at
a high level of granularity[p. 5 of Reference 14].” “This allows for the identification of evidence clusters and evi-
dence deserts to direct the focus of future systematic reviews and to identify areas for more primary studies to be
conducted[p. 5 of Reference 14].” Directing the focus of future systematic reviews aligns with our aforementioned objec-
tives. Ultimately, our attempt at defining the transition to microservices will pave the way for future development and
research related to microservice transition. Furthermore, understanding the problem of reasoning about microservice
granularity allows identifying areas for future primary studies. Since the examined literature regarding microservices
spanned a broad variety of aspects, we found a systematic mapping study to be suitable given the amount of reviewed
literature.14

In Section 2 we describe the steps we followed in the systematic mapping study. In Section 3 we report and briefly
analyze our mapping study results. In Section 4 we use this analysis to: (i) present our working definition for the

HASSAN et al. 1653

transition to microservices (Section 4.1) and (ii) identify gaps in the state-of-the-art and -practice related to reasoning
about microservice granularity (Section 4.2). Overall, the identified gaps motivate the need for:

• Microservice-specific modeling support potentially using an architecture definition language (ADL) that “treats
microservice boundaries as adaptable first-class entities(p. 2 of Reference 15)” thereby facilitating runtime analysis of
microservice granularity in a systematic architecture-oriented manner.15

• A dynamic architectural evaluation approach that captures two dimensions under uncertainty at runtime: added value
to be introduced and cost to be incurred if the granularity of microservice architectures is adapted.

• Effective decision support that should systematically guide the software architects toward suitable granularity adapta-
tion strategies at runtime or suggest revisiting their expectations of the architecture’s runtime environment.

In Section 6 we compare and contrast-related literature reviews, studies and surveys in the field of microservices
against our systematic mapping study. In Section 5 we reflect on threats to the validity of our study. In Section 7 we sum-
marize contributions that are not directly linked to microservices but can be relevant to their emergence and development.
In Section 8 we conclude by summarizing the results of our systematic mapping study.

2 SYSTEMATIC MAPPING STUDY PROCESS

The process we follow in our mapping study is inspired by guidelines from Reference 14. In the subsections below, we
describe our application of each stage of this process.

2.1 Research questions

Overall, this paper conducts a systematic mapping study to address the following objectives:

• Objective 1: providing a better understanding of the transition to microservices—we consolidate various views (indus-
trial, research/academic) of the principles, methods, and techniques that are commonly adopted to assist the transition
to microservices. This consolidation allows us to reach a working definition for the transition to microservices; we term
this transition microservitization.

• Objective 2: understanding a fundamental problem of the transition to microservices related to reasoning about their
granularity—we review state-of-the-art and -practice related to reasoning about microservice granularity. This review
allows us to understand the state-of-the-art and -practice in the modelling approaches, aspects considered, guidelines
and processes used to reason about microservice granularity.

Given these objectives, we reify them into the following research questions. Along with each question we outline the
rationale behind it.

Objective 1: Providing a better understanding of the transition to microservices

• What are the activities undertaken to adopt microservices? This question helps understand the principles, methods
and techniques of the transition to microservices by digesting experiences of microservice adopters in industry and in
academic research.

Objective 2: Understanding a fundamental problem of the transition to microservices related to reasoning about their
granularity

• What are the modeling approaches used to define the granularity of a microservice? The aim of this question is to
identify the support provided by microservice-specific models for reasoning about granularity and to investigate how
systematic (ie, standardized and methodological) these models are.

• Which quality attributes are considered when reasoning about microservice granularity and how are they captured?
The aim of this question is to elicit the possible trade-offs which software architects need to balance when reasoning
about microservice granularity and/or how these trade-offs can be captured objectively.

1654 HASSAN et al.

• How is reasoning about microservice granularity described? The aim of this question is to explore the state-of-the-art
regarding triggers and steps of microservice granularity adaptation and their suitability to the dynamic microservice
environment.

2.2 Search strategy

The terms used when searching for English publications were “microservice” and “micro-service”; Google Scholar,
Association for Computing Machinery Digital Library, Institute of Electrical and Electronics Engineers (IEEE) Xplore,
ScienceDirect, SpringerLink, and Wiley InterScience were used during this search. Our scope of publications includes
journals, theses, books, conferences, workshops, blog articles, presentations, and videos. For academic publications,
snowballing was applied16 to further extract relevant literature. Nonacademic publications were included since most
industrial experiences regarding microservices were published in these forms. We made our best effort, however, to only
include articles that either transcribe the view of adopters or ones where the author is the opinion holder. We believe
answering the research questions above comprehensively requires examining both academic and nonacademic experi-
ences with microservices. This broad scope also aligns with a property of systematic mapping studies—aiming for broad
coverage rather than narrow focus.14 Our search was restricted to publications between January 2013 and April 2020,
since the microservice trend had not emerged prior to that; nonacademic literature started to appear in 201317 while
peer-reviewed publications started to appear in 2014.18 Meta-data of the search results was maintained using a tool called
“Publish or Perish.”.19

2.3 Selection of primary studies

Initially, the search results were examined for relevance according to inclusion and exclusion criteria below. Each research
question elicited in Section 2.1 has corresponding inclusion/exclusion criteria (their structure is inspired by Reference
20). Along with each criterion is the rationale behind it. The rationale are presented in italics.

What activities are undertaken to adopt microservices?
Inclusion Criteria:

• Publications generically presenting the challenges of adopting microservices since they can be used to infer the activities
comprising the transition to microservices.

• Case studies of adopting microservices are used to complement and verify the activities in generic publications.
• Publications comparing specific development tools in the microservice industry because they can be used to infer

activities comprising the transition.

Exclusion Criteria:

• Publications without any reference to microservices. Including such publications would confuse rather than clarify
understanding the transition to microservices. This is against Objective 1 of our study.

• Publications that refer to servitization in the business not the software context since we are only concerned about the
activities of shifting a software system from another architectural style to microservices.

What modeling approaches are used to define the granularity of a microservice?
Inclusion Criteria:

• Publications defining formal notations/diagrams for modeling microservices. Such publications can be used to assess
how systematic the state-of-the-art is for modeling microservice granularity.

• Proposals of modeling concepts for microservices. Even when unverified, a proposed modeling concept can provide an
insight for the building units of reasoning about microservice granularity.

• Publications presenting industrial case studies for modeling microservices. Such publications would verify and illustrate
the expressiveness of proposed modeling concepts to microservice granularity.

HASSAN et al. 1655

Exclusion Criteria:

• Papers which provide binding and reconfiguration solutions for service-oriented architectures
(SOAs)/web-services/mobile services only are excluded since they do not capture the properties specific to microser-
vices, hence they are not suited for reasoning about microservice-specific decision problems (in this case microservice
granularity).

• Papers which provide modeling approaches for SOAs/web-services/mobile services are excluded since they do not
capture properties specific to microservices, hence they are not suited for reasoning about microservice-specific decision
problems (in this case microservice granularity).

Which quality attributes are considered when reasoning about microservice granularity and how are they captured?
Inclusion Criteria:

• Publications presenting metrics used when reasoning about microservice granularity. Such publications would help
assess how objectively the trade-offs affecting microservice granularity are captured in academia and/or industry.

• Case studies involving the quality drivers considered when reasoning about granularity. Such publications would
realistically capture the significance of specific trade-offs when reasoning about granularity adaptation.

• Publications focused on vendor-specific comparisons between platforms supporting reasoning about microservice
granularity. This can help derive the quality attributes and metrics considered when reasoning about granularity.

Exclusion Criteria:

• Case studies that do not explicitly relate a challenge to its impact on microservice granularity. Since case studies
report concrete challenges and trade-offs impacting them, it is unreasonable to claim an impact of a reported trade-off on
granularity if that is not reported explicitly in a case study.

How is reasoning about microservice granularity described?
Inclusion Criteria:

• Publications including guidelines for reasoning about microservice granularity. This helps to identify the state-of-the-art
regarding triggers and/or steps for granularity adaptation.

• Publications showing a sequence of when and how granularity is reasoned about in the application’s lifecycle. These
publications help assess how much the state-of-the-practice considers dynamicity in microservice environments when
reasoning about granularity adaptation.

Exclusion Criteria:

• Publications that provide generic best practices for the granularity of applications with no reference to microservices
(eg, related to web services, SOA, mobile services). Such best practices are not targeted specifically at microservices, so it
would not be reasonable to use them in the context of microservice granularity.

2.4 Keywords and classification

“The purpose of this stage is to classify papers with sufficient detail to answer the broad research questions and identify
papers for later reviews without being a time consuming task[p44 of Reference 14].” Here we classify the included publi-
cations according to two classification frameworks. Initially, we classify them according to their research approaches. We
elicit these approaches from the seminal guidelines in Reference 21.

The second classification framework entails categorizing the publications under categories derived from our research
questions of concern. A publication belongs in a category if it contains any of the corresponding keywords identified in
Table 1. The identification of the keywords is inspired by a microservice-specific systematic mapping study13 and refined
iteratively as more publications were examined. It is worth noting that for all the included publications, we manually

1656 HASSAN et al.

T A B L E 1 Inferred classification framework used to classify the included publications in our study

Research question Category Keywords

What activities are undertaken to
adopt microservices?

Architectural design Architectural style, communication mechanism, boundaries, orchestration,
service choreography, service registration, service discovery, design
patterns, proxy, bulkhead, circuit breaker, router, routing

Organization Conway’s law, decentralized governance, cross-functional teams,
hierarchical teams

Operation Devops, NoOps, configuration settings, operation

Deployment Continuous integration, CICD, continuous deployment, deployment
pipeline, automated deployment, virtualisation, hypervisors,
containerisation, configuration provider

Development Heterogenous tools, agile development, extreme programming

Monitoring Regression unit testing, health monitoring, cluster monitoring,
troubleshooting, debugging, failure

Logging central logging, decentralized logging, profiling, tracing

What modeling approaches are
used to define the granularity
of a microservice?

Structural Domain-driven, classes, instances, resources, components, message format,
data item, topology, service dependency, nodes, type definition

Behavioral Event flow, message stream, activity flow, communication flow, event
triggers, execution timeline, use cases

Which quality attributes are
considered when reasoning
about microservice granularity
and how are they captured?

Performance QoS, efficiency, service contracts, SLA, performance, response time,
throughput, performance bottleneck, invocation duration, transaction
duration, customer value

Reliability Fault tolerance, disaster recovery, single point of failure, resilience,
robustness, failure rate, error rate

Scalability Auto-scale, scalable, scaling, load balancing, load distribution, completed
transactions per second

Maintainability Maintainable, changeable, maintenance cost, maintenance overhead,
adaptability, changeability, effort cost, expandability, dynamicity

Complexity Communication overhead, complexity cost, development cost, tight
coupling, low cohesion

How is reasoning about
microservice granularity
described?

Guidelines Two-pizza team, lines of code, half-life, agile manifesto, one task, single
responsibility, fine-grained functionality, separation of business concerns,
high cohesion, loose coupling

Processes Iterative, strangler pattern

Abbreviations: CICD, continuous integration and continuous delivery; QoS, quality of service; SLA, service level agreement.

categorized them to ensure that synonyms or partial matches of these keywords are accurately handled. We justify the
keywords (italicized below) under each category as follows:

What activities were undertaken to adopt microservices?

• Architectural design: publications in this category are concerned with all the technical activities which comprise
adopting microservices. We use this category to verify whether or not microservice adopters call microservices an
architectural style and/or design pattern. Choosing the generic communication paradigm of the architecture (eg, orches-
tration, choreography) and the more concrete message exchange pattern (eg, using a router/proxy) are also among the
technical activities of microservice adoption. In addition, the boundaries of the system and individual components of
the system is a technical design decision when moving to microservices. The fault tolerance mechanisms of the sys-
tem also need to be identified (eg, bulkhead and circuit breakerpatterns). Because microservice applications are highly
distributed and scalable, two additional technical decisions are critical in microservitization: service registration and
service discovery.

HASSAN et al. 1657

• Organization: in this category we are concerned with the organisational impact of adopting microservices. The
state-of-the-practice in the microservice industry is to motivate decentralised governance (ie, holding the responsibility
of building and running22) through microservitization.4 The three most common means of achieving that is through
following Conway’s law4, cross-functional teams, or hierarchical teams.23 Conway’s law states “organisations which
design systems … are constrained to produce designs which are copies of the communication structures of these
organisations.24”

• Operation: publications in this category are concerned with identifying how the system will be governed
post-deployment. This includes defining who is responsible for this governance to begin with. The state-of-the-practice
is in the microservice industry is two alternative approaches: DevOps where the governance is shared across a devel-
opment team and an operations team; and NoOps, where the governance is fully the responsibility of the development
team. In addition, operational activities include defining the configuration settings and configuration provider which
the governor of the microservice application needs to follow or in different runtime situations.

• Deployment: this category includes publications that define approaches for managing the deployment pipeline of a
microservice application. The state-of-the-practice in the microservice industry is two alternative approaches:25,26

continuous integration and continuous delivery (abbreviated as CICD), and automated deployment. “Continuous inte-
gration is a coding philosophy and set of practices that drive development teams to implement small changes and
check in code to version control repositories frequently.27” “Continuous delivery picks up where continuous integra-
tion ends. Continuous delivery (CD) automates the delivery of applications to selected infrastructure environments.27”
“Deployment automation allows applications to be deployed across the various environments used in the development
process, as well as the final production environments.28” Common deployment automation tools in the microservice
field include Kubernetes and Istio. Regardless of the deployment pipeline, the host on which this pipeline is enforced
is another critical decision in this category. The three most common approaches for deploying microservices are virtu-
alization, using hypervisors, and/or containerization. Cross-cutting these approaches are deployment activities that can
be motivated by different quality attributes (eg, load-balancing and auto-scaling motivated by scalability). To answer
the question of identifying which quality attributes are considered when reasoning about microservice granularity we
find it more be-fitting to categorize these activities as keywords under their related quality attributes.

• Development: publications in this category describe how the transition to microservices impacts software development
practices. The state-of-the-practice in microservice development is adopting extreme programming and agile practices
using heterogenous tools (eg, Springboot, Fabric8).

• Monitoring: publications in this category are concerned with identifying the alternative rationales of runtime moni-
toring (eg, health, cluster) of microservice application and the alternative approaches which support monitoring (eg,
regression unit testing, troubleshooting, debugging, and failure identification).

• Logging: in this category we are concerned with where the monitoring results are to be stored. Logging is alternatively
called profiling or tracing. The two alternative approaches of logging in the microservice industry as we have examined
are central or decentralized logging.

What modeling approaches are used to define the granularity of a microservice?

• Structural: publications in this category are concerned about contributions that capture the structure (alternatively
called topology) of the microservice architecture. Depending on the nature of the contribution (eg, domain-driven29),
the units of this structure differ (eg, classes, instances, resources, components, data items, messages, and/or nodes).
Modeling these units includes capturing the dependencies across those units and their types.

• Behavioral: alternative to the approach above, publications in this category capture the sequence of actions (ie, events,
messages, activities, communication, execution steps, and/or use cases) of a microservice application. The granularity of
a microservice in this case would be defined in terms of which actions a single microservice is responsible for.

Which quality attributes are considered when reasoning about microservice granularity and how are they captured?

• Performance: wherever the main driving force of reasoning about granularity is performance (alternatively called
QoS, long-term value, efficiency or customer value), the publication is put under this category. The metrics for cap-
turing performance objectively include response time, throughput, invocation duration, identifying the performance

1658 HASSAN et al.

bottlenecks, and/or transaction duration. Thresholds on these metrics are captured in service contracts, service level agree-
ments(abbreviated as SLAs). We subsume service contracts as “an agreement between the a consumer and provider
service about the format of data that they transfer between each other. Normally, the format of the contract is defined
by the consumer and shared with the corresponding provider. Afterwards, tests are being implemented in order to
verify that the contract is being kept.30”

• Reliability: publications that imply or explicitly focus on enhancing reliability as the primary driving force when
reasoning about granularity are included in this category. Reliability entails exhibiting fault tolerance, disaster recov-
ery, resilience, eliminating single points of failure, and/or robustness. Reliability is captured objectively in terms of
failure/error rate.

• Scalability: publications that reason about granularity in terms of how it enhances the scalability of the architecture are
included in this category. Exhibiting scalability entails employing strategies such as auto-scaling, load balancing, and/or
load distribution. Measuring scalability objectively can be done by looking at the number of completed transactions per
second (or per unit of time more generally).

• Maintainability: exhibiting maintainability entails exhibiting adaptability, changeability, expandability, and/or dynam-
icity. These properties are objectively captured in terms of maintenance cost, maintenance overhead, and/or effort cost.
Publications concerned with reasoning about granularity in terms of enhancing maintainability are included in this
category.

• Complexity: minimizing complexity entails following two crucial design principles: tight couplingand/or low cohesion.
This is measured in terms of communication overhead, complexity cost, and/or development cost. Publications where
reasoning about granularity considers and/or measures its complexity are included in this category.

How is reasoning about microservice granularity described?

• Guidelines: publications under this category provide decision-making strategies for reasoning about granularity regard-
less of the steps of applying these strategies. The keywords under this category capture the state-of-the-practice
guidelines.

• Processes: publications under this category are more elaborate in the sense that they enrich the granularity adap-
tation strategies with a sequence for applying them. The keywords under this category capture the alternative
state-of-the-practice processes encountered for reasoning about microservice granularity.

2.5 Data synthesis

Really Simple Syndication (RSS) feeds and manual search were used to obtain publications complying with the strategy
defined in Section 2.2. The results were then manually examined for inclusion and categorised according to the criteria
and frameworks described above (Sections 2.3 and 2.4, respectively).

3 RESULT REPORTING AND ANALYSIS

In this section we present graphs summarizing distributions of the included publications along the categories described
in Table 1. For each graph, we discuss how it helps serve the objectives outlined in Section 1.

3.1 Publication distribution overview

A total of 877 publications met the inclusion criteria in Section 2.3. Table 2 lists representative examples of the included
publications categorized according to Table 1. Figure 1 shows the overall distribution of the publications according to the
publication type.

As justified in Section 2, we widened the scope of our study to include both academic and industrial publications.
Broadly, we consider a publication type to be academic if it has gone through editing or peer-revision (the red bars in
Figure 1); about 63% of the included publications. On the other hand, nonacademic publications account for about 36%

HASSAN et al. 1659

T A B L E 2 Representative examples of publications included in the systematic mapping study

Research question Category Representative examples

What activities are undertaken to adopt microservices? Architectural design 31-44

Organization 45-54

Operation 48,55-67

Deployment 68-79

Development 80-92

Monitoring 93-99

Logging 100-102

What modeling approaches are used to define the granularity of a
microservice?

Structural 29,103-112

Behavioral 8,113-117

Which quality attributes are considered when reasoning about
microservice granularity and how are they captured?

Performance 118-124

Reliability 125-130

Scalability 131-135

Maintainability 101,136-138

Complexity 139-144

How is reasoning about microservice granularity described? Guidelines 145-155

Processes 110,156-164

F I G U R E 1 Publications between
January 2013 and April 2020 as per the
search strategy defined in Section 2.2
included as per criteria from Section 2.3
classified according to their publication
type; the red bars are the publications
we consider as academic and the blue
bars are those we consider nonacademic
[Colour figure can be viewed at
wileyonlinelibrary.com]

of the total. Although the majority of publications are academic, nonacademic literature still comprises a significant
percentage. Had we excluded these publications, attempting a definition for microservitization (Objective 1 in Section 1)
would have been biased. The exclusion of nonacademic sources would lead to missing relevant keywords related to each
category and the coverage of industrial opinions and experiences related to microservice adoption would be narrower.

We further classify peer-reviewed publications according to a highly cited paper classification framework21 which
targets IEEE papers. This framework classifies papers according to their research approach; a brief description of each
approach is presented in Section 2. This framework has been applied before in the context of microservices,13 so we
consider it a neat fit for our study. To match the target context of the framework, we only apply it to peer-reviewed
publications (Figure 2).

Solution proposals by far comprise the largest number of peer-reviewed publications. Solution proposals present
novel, significant techniques without a full-blown validation. A proof-of-concept may be offered in solution proposals by

http://wileyonlinelibrary.com

1660 HASSAN et al.

F I G U R E 2 Academic (ie, peer-reviewed)
included publications between January 2013 and April
2020 as per the search strategy defined in Section 2.2
classified according to their research approach; the
classification criteria are derived from Reference 21
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 3 Included publications
between January 2013 and April 2020 as
per the search strategy defined in
Section 2.2 that have keywords related to
the first research question in Table 1
[Colour figure can be viewed at
wileyonlinelibrary.com]

means of a small example, a sound argument, or by some other means.21 Therefore, the microservices trend is a thriving
field for novelty but it is still lacking maturity. Validation research publications — which thoroughly investigate solution
proposals21—only amounted to 73 publications, which further proves the lack of maturity in the field. The large differ-
ence between the solutions proposals and validation research publications proves the need for disciplining the transition
to microservices. The following subsections further discuss this need then focus on one of the fundamental problems of
the transition—reasoning about microservice granularity.

3.2 Objective 1: Providing a better understanding of the transition to microservices

Figure 3 classifies the publications which include keywords related to: what are the activities undertaken to adopt
microservices? Architectural design and managing deployment are the most popular activities undertaken when adopt-
ing microservices. Therefore, we infer they are crucial activities in the transition to microservices. Nevertheless, there is a
significant number of publications in the other categories of Figure 3. The variation in number of publications across cat-
egories of Figure 3 implies there is no consensus in describing the transition to microservices. This leaves room for us to
contribute the microservitization term which attempts to provide a better understanding of the transition to microservices.

3.3 Objective 2: Understanding the microservice granularity problem

One of the fundamental problems of the transition to microservices is finalising their level of granularity.165 ADL classi-
fication frameworks166 indicate that structural (or “topological[p26 of Reference 166]”) as well behavioral aspects of an

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

HASSAN et al. 1661

architecture need to be modeled. Figure 4 helps to clearly identify the state-of-the-practice in modeling microservices;
to answer what are the modeling approaches used to define the granularity of a microservice? The structural modeling
approaches proposed for microservices are almost double the behavioral approaches. Structural approaches capture the
topology and/or dependencies across building units of the microservice architecture. On the other hand, behavioral
approaches capture the actions of these units in several runtime scenarios in which the modelled microservice operates.
Therefore, a systematic, architecture-oriented modeling approach for microservice architectures which facilitates reason-
ing about granularity needs to capture the architecture’s structural and behavioral aspects. The difference in numbers
between structural- and behavioral-oriented publications in Figure 4indicates that there is a lack in modeling approaches
that capture both aspects of a microservice architecture.

Figure 5 classifies publications according to the quality attributes they aim to optimise when reasoning about microser-
vice granularity; to answer which quality attributes are considered when reasoning about microservice granularity and
how are they captured? In other words, they can be the most common means to introduce utility through cost-effective
microservitization. Scalability is the most common quality considered in the examined literature. This is reasonable
given the dynamic, large-scale environment in which microservices operate.8,167 Therefore, we infer that scalability can
introduce added value to most microservice architectures. Relatively few publications have considered complexity/cost
when reasoning about microservice granularity. Therefore, there is room for contributing to dynamic decision support
which objectively considers both the potential value and cost of decisions related to microservice granularity (ie, adapting
granularity by decomposing or merging microservices).

Figure 6 classifies proposed approaches for reasoning about microservice granularity according to how they are
described; this answers how is reasoning about microservice granularity described? Most of the proposed approaches are
ad-hoc guidelines that could be applied differently at various points of the microservice application’s lifecycle. However,
effective decision support for microservice granularity should comprise a clear sequence of distinct steps to be triggered
under clear conditions. We have not found such effective support even in the 33 publications proposing a process to rea-
son about microservice granularity. Therefore, we infer that there is a lack in effective decision support for reasoning
about microservice granularity in terms of clear adaptation steps and triggers.

F I G U R E 4 Included publications between
January 2013 and April 2020 as per the search strategy
defined in Section 2.2 which have keywords related to
the second research question in Table 1 [Colour figure
can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Included publications between
January 2013 and April 2020 as per the search strategy
defined in Section 2.2 that have keywords related the
third research question in Table 1 [Colour figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

1662 HASSAN et al.

F I G U R E 6 Included publications between
January 2013 and April 2020 as per the search strategy
defined in Section 2.2 that have keywords related the
fourth research question in Table 1 [Colour figure can be
viewed at wileyonlinelibrary.com]

4 ADDRESSING SYSTEMATIC MAPPING STUDY OBJECTIVES

In Section 4.1 we contribute to an empirically grounded working definition for the transition to microservices; we call
this transition microservitization. In Section 4.2, we identify the gaps in state-of-the-art and -practice related to reasoning
about microservice granularity (inferred from Section 3) and discuss how they can be addressed.

4.1 Objective 1: Providing a Better Understanding of the Transition to Microservices

We have not found in the surveyed publications an empirically grounded definition which characterises the transition
to microservices, but rather several conflicting, informal attempts coming from industry and academia. Table 3 analyzes
these attempts in terms of whether or not they explicitly include the activities derived from the microservice-specific
systematic mapping study13 and described in Section 2.4. It is worth noting that the attempts analyzed in this table are just
a fraction of the publications summarized in Figure 3. In Table 3 we focus on the explicit attempts to define the transition

T A B L E 3 Analyzing publications that attempt to define the transition to microservices included in the systematic mapping study; a T
means the publication includes the activity in the corresponding column

Microservice adoption Activity

Publication Architectural design Organization Operation Deployment Development Monitoring Logging

165 T T T

168, 168 T

169, 169 T T T

170, 170 T T T

171, 171 T T T T T

172, 172 T

173 T

174 T T T

175 T T T

176 T T T T T T

177 T

18 T T T

12 T T

178 T T T

179 T T

153 T

http://wileyonlinelibrary.com

HASSAN et al. 1663

to microservices, while Figure 3 includes both explicit attempts to define the transition and case studies of microservice
adoption which do not explicitly attempt to define the transition.

Observing Table 3, we introduce a definition for the transition to microservices (adapted from the activities included
in Reference 13) which we call microservitization to cover all the relevant activities of the transition to microservices.
This definition is adapted from activities included in Reference 13 and inspired by a trending concept in business and
manufacturing domains180 — servitization.

In the manufacturing and business domains, servitization is seen as a paradigm shift entailing “manufacturers grow-
ing their revenues and profits through services181” rather than tangible functional products. A service in this context is
any feature that helps the business to (i) “really make money” and (ii) deliver new outcomes to customers. Examples of
services in servitization include software applications, customer support, and self-service capabilities.182

Servitization “embraces business model innovation, organisational change, and new technology adoption. Services
exist in various forms, and represent differing values to both the customer and provider181”. To benefit from these values,
servitization involves developing new relationships with customers, innovating customer value propositions, forming
new value chain relationships, and adapting business models.181,183 The key to successful servitization is “choosing the
right technology, picking the appropriate moment to invest, and ensuring successful implementation184” which aligns
with the business objectives.182

We liken the transition to microservices to servitization because of the following resemblances:

• Servitization is driven by delivering new outcomes to customers which can translate into revenues and profits. Sim-
ilarly, the transition to microservices is driven by improving QoS provision to end users and translating that into an
economic gain.

• Servitization entails embracing innovation in the manufacturing activities (eg, building business models and defin-
ing customer value propositions) are carried out. Similarly, the transition to microservices entails a dramatic change
(motivated by value creation) to the way technical activities manifested in the software architecture are carried out.

Therefore, we define microservitization as a form of servitization where “services/components are transformed into
microservices — a more fine-grained and autonomic form of services (p1 of Reference 15)” — to introduce added value to the
architecture3. “Microservitization is also an example of a paradigm shift(p1 of Reference 15)” since it involves dramatically
changing how the following technical activities are carried out to align them with a microservice adopter’s business objectives:

• Architectural design: microservitization introduces the following critical architectural design activities:
– Choosing light-weight communication mechanisms: microservitization can increase the distribution of function-

alities across the architecture thereby introducing extra communication calls between microservices.8 Therefore,
rather than relying on enterprise service buses (which are the state-of-the-practice in SOA architectures), more
light-weight mechanisms such as pipes and filters, event-based queues, and correlation identifiers are critical to
avoid very high communication costs in microservice architectures. The large number of microservices can lead to
a large volume of message exchange and hence high communication costs.

– Reasoning about microservice granularity levels: a suitable granularity level is paramount to inform buying COTS
concrete services or developing them in-house.3 Choosing these services correctly is critical to introducing added
value to the microservice architecture.

– Adopting fault tolerance design patterns: although striving for fault tolerance is a best practice in any architecture,
investing in fault tolerance design patterns is all the more critical to microservitization. The criticality is due to
the scale of industries adopting microservices (eg, retail,185 entertainment61,186) where microservices span different
continents with a wide variety of end users. Microservice-specific fault tolerance design patterns include circuit
breakers and bulkheads.

– Incorporating microservice registration and discovery mechanisms: microservices are typically developed, deployed
and replaced at a very quick rate.8 Therefore, it is critical to incorporate robust registry and discovery mechanisms
in microservice architectures to ensure an up to date record of the currently “alive” microservices.

• Managing the organizational hierarchy: microservitization has a direct impact on the organizational hierarchy.187

In particular, the autonomy and independent deployability enhanced in the architecture through microservitization
facilitate decentralised governance by breaking “silos” (based around strict separation of job roles) in the organization.

• Operation: microservitization aligns operation management with breaking organizational “silos.” DevOps and NoOps
are among the state-of-the-practice operation management approaches in microservitization; they involve “a set of

1664 HASSAN et al.

practices intended to reduce the time between committing a change to a system and the change being placed into
normal production, while ensuring high quality188”. Decentralised operation management can reduce the risk of bot-
tlenecks that can materialise into economic losses to the microservice adopter. Reducing this risk is conditional upon
development operation teams adhering to SLAs between them.

• Deployment: microservitization introduces a critical challenge of determining the hosts on which a deployment
pipeline is implemented.187 This is critical to balancing between the added value of microservitization and cost that
can be introduced by a deployment pipeline implementation choice (eg, physical link installation, server rental and
maintenance costs). Virtualization and containerization are among the common deployment pipeline implementa-
tion choices. They can enable swift auto-scaling the microservice architecture in response to changes in its runtime
environment; this can materialize into economic gains for competitive microservice adopters.

• Development: unlike other software development paradigms, microservitization enables freedom in choosing devel-
opment tools which can in turn introduce more added value to the architecture.13 This freedom is a bi-product of
the decentralised governance enabled by microservitization. It is worth noting that communication and knowledge
sharing across teams using different development tools needs to be carefully managed to ensure this freedom actually
introduces added value.

• Monitoring: microservitization requires much more robust, decentralised and customisable monitoring than that
of classical SOAs due to the heterogeneity of tools used to develop microservices and scale at which they typi-
cally operate.8 These requirements are critical to cater for the heterogeneity, scale, and dynamism of microservice
architectures.

• Logging: maintaining logs of the monitoring data needs to be more customisable and distributable than logging clas-
sical SOAs due to the heterogeneity of tools used to develop microservices and scale at which they typically operate.8
This requirements are aligned with the aforementioned monitoring challenges introduced by microservitization.

4.2 Objective 2: Understanding the microservice granularity problem

Based on our definition above, microservitization introduces the challenge of reasoning about the suitable granularity
level of a microservice.

To formalize the microservice granularity problem, the gap we identified is the lack of an architecture-oriented mod-
eling approach that captures a microservice’s granularity behaviour, thereby supporting runtime analysis of this behavior.
The approach should treat microservice boundaries as the primitives for formulating the microservice granularity deci-
sion problem and actuators of microservice granularity adaptation decisions. These decisions include merging multiple
microservices into a single boundary and decomposing a microservice into multiple ones encapsulated by multiple bound-
aries. In other words, this approach should treat microservice boundaries as adaptable first-class entities to ensure that
both the structural and behavioral aspects of the microservice architecture are captured; we contribute to this approach in
Reference 15. While conducting our study, we have seen architecture-oriented modeling approaches that treat the notion
of boundaries statically (eg, Reference 189), or provide support for adaptability but without explicitly capturing the notion
of adaptable boundaries (eg, Reference 190). Because the role of microservices is to encapsulate functionality, it is intu-
itive to use boundaries as adaptable first-class entities in the modelling approach. By contrast, if the decision problem
was to determine the optimal physical infrastructure to host the microservice, for example, the adaptable first-class entity
would be different (eg, microservice configuration variables).

To reason about microservice granularity objectively and dynamically, the gap we identified is the lack for an archi-
tectural evaluation approach that captures two aspects explicitly: added value to be introduced and cost to be incurred by
pursuing granularity adaptation.

To effectively support reasoning about granularity adaptation, the gap we identified is the need for a decision sup-
port tool for reasoning about this problem at runtime. It is seen as a runtime problem since the suitable granularity
level highly depends on the current scenario in which the microservice architecture is operating.3 For example, if a cer-
tain functionality in a microservice-based application is continuously receiving a large volume of requests at runtime,
it makes sense to decompose this functionality in a separate microservice to manage its load separately. On the other
hand, if two microservices are continuously communicating across a network at runtime causing latency, then merging
these microservices is sensible to help reduce such latency. Overall, uncertainties related to the expected environment and
behavior191 of the microservice architecture can not be fully captured at design time. Therefore, a runtime decision sup-
port tool is necessary to track and analyze this uncertainty. The tool should systematically guide the software architects

HASSAN et al. 1665

toward suitable granularity adaptation strategies at runtime or suggest revisiting their expectations of the microservice
runtime environment. Each candidate granularity adaptation strategy must be systematically described as a sequence
of merging/decomposition steps accompanied by triggers on them. Moreover, the tool’s suggestions need to be justified
objectively while leaving the final decision to the architects for adopting the suggested strategies; approaches such as
Reference 192 can inspire the design of this tool.

5 THREATS TO VALIDITY

In this subsection we acknowledge the threats to validity in the process we use in our systematic mapping study as well as
the application of each stage. Threats to validity are “influences that may limit our ability to interpret or draw conclusions
from the study’s data (p351 of Reference 193)”.

When defining our search strategy in Section 2.2, we considered blog articles, presentations, and videos as the means of
reporting first-hand industrial experiences with microservice adoption. We acknowledge that an alternative means could
be interviews with microservice adopters in the industry. However, published blog articles, presentations and videos are
arguably more trusted since they present a more responsible and objective view than interviews. Though they can enrich
the study with diverse opinions, interviews tend to suffer from bias, subjectivity, and irresponsible answers.194 Moreover,
our search strategy yields publications that explicitly mention microservices. Nevertheless, we acknowledge that there
are publications prior without direct mention of microservices that could be relevant to their emergence and thereby to
our research (eg, web service composition and agile development). We attempt to address this threat briefly in Section 7.

We acknowledge that the inclusion and exclusion criteria might have led to missing contributions that can inspire
the microservices field. However, since our study was motivated by studying the state-of-the-art and -practice in the
microservices trend we based the criteria on publications which already have a link to microservices. Nevertheless, we
briefly outline the research areas that can inspire the microservice trend in Section 7. On a more technical level, we
excluded publications that could not be translated to English which might have affected the study results.

We iteratively built Table 1 to include all the relevant keywords and made our best effort to justify them (Section 2).
However, we acknowledge that some keywords might have been missed related to each research question.

When extracting videos and presentation for inclusion in the study results, we made our best effort to include videos
whose content contained keywords from each category. The keywords are either mentioned by the speaker in the video
or in the slides presented in the presentation. We acknowledge, however, that this might have biased the study results
and that in the future transcription of the videos/presentations would be a more accurate means of determining their
relevance.

When categorizing publications according to Table 1, we made our best effort to considers synonyms of the key-
words in each category. However, since we categorized the publications by manual examination, we acknowledge that
their distributions might have been skewed. In particular, we acknowledge that subjective interpretation of keywords
might need to be complemented with more systematic approaches of categorizing the yielded publications. For example,
the context in which a keyword or a fragment is mentioned needs to be considered before putting each publication
under a certain category. A more systematic categorisation of the publications can ensure the reproducibility of our
results.

We acknowledge that skewed distributions might lead to biassed inferences regarding gaps in the literature related
to each objective of our study. For example, the variation in numbers of publications across categories in Figure 3 might
be due to the inadequacies in keywords under each category. It might also indicate interest in architectural design across
practitioners (ie, in nonacademic publications); this might not be as accurate for academic publications. Nevertheless,
we argue that our mapping study results give a strong insight into the microservice trend and opens directions for
more detailed research down each direction. For example, a systematic mapping study can be conducted which focusses
specifically on microservice architectural design and/or development—the most dense categories in Figure 3.

6 RELATED STUDIES

Motivated by disciplining the understanding of microservices, several studies have been conducted to examine the existing
literature in this young yet trending field. They analyze existing literature with a variety of focuses. In this section, we
compare and contrast the examined studies against the systematic study we conducted.

1666 HASSAN et al.

The closest to our study are References 13,37,195,196 since they both adopt a systematic mapping study process
when examining the literature. However, the motivations in these studies are different from ours. In Reference 13,
for example, the research questions motivating the study are related to challenges, modeling approaches and quality
attributes considered when adopting microservices. These questions do overlap partially with both objectives of our
study but they do not focus on reasoning about microservice granularity as we do in our study. In Reference 197,
the composing microservices is studied from the perspective of semantic annotations. This overlaps slightly with the
second objective of our study since composing microservices entails reasoning about granularity. However, our work
takes a broader approach to studying the aspects of reasoning about granularity. In Reference 198, the activities com-
prising the transition to microservices are inferred through a literature review (aligned to Objective 1 of our study).
However, it does not focus on microservice granularity so our study is significant to understanding this microserviti-
zation challenge. In Reference 199, a broad approach is taken to study microservice literature. We acknowledge that
it goes beyond our work in studying the research approaches utilised in the microservice community. Furthermore,
this study dives into the computing aspect of the transition to microservices (analogous to the development publi-
cations category in our study). Nevertheless, our study is goes beyond199 with regards to defining the transition to
microservices. Furthermore, our work is unique with regards to studying literature along different aspects of microservice
granularity.

Several systematic literature reviews and surveys focus on defining the fundamental properties of microservices and
the challenges of adopting them. They range in their rigour: some follow a rigorous search protocol12,18,45,73,177,200-202

while others are less formal.203 These studies overlap partially with Objective 1 of our study; they present activities related
to microservices thereby contributing to a better understanding of the transition. However, they do not define on the
transition to microservices nor can they be used to understand the microservice granularity problem. In Reference 175, the
transition to microservices is partially described in terms of design patterns that can be applied to microservices. However,
the scope of activities comprising the transition is not clearly defined. The approach of design patterns is also used in
Reference 204. The patterns proposed in Reference 204, however, do not necessarily require microservice granularity
adaptation. However, our work focuses on studying literature regarding microservice granularity. We envision that our
work and References 175,204 can benefit from each other to elicit granularity adaptation patterns and to expand the
concerns of microservice architectural design patterns.

Some studies mainly focus on modeling microservices.205,206 Their focus partially overlaps with our following research
question: what are the modeling approaches used to define the granularity of a microservice?

On the other hand,207 aims to “construct knowledge of quality attributes in architecture through a systematic literature
review (SLR), (an) exploratory case study and (an) explanatory survey (p1 of Reference 207).” In essence, this study can
be used to partially address our question: what are the quality attributes considered when reasoning about microservice
granularity and how are they captured? Nevertheless, the other research questions of our study were not answered in this
study.

Overall, the examined studies can complement this paper to discipline the understanding of the transition to microser-
vices. In this paper, our research questions are formulated with focus on a specific problem of this transition—reasoning
about microservice granularity.

7 RELEVANT RESEARCH FIELDS

Although we focus on publications that have direct links to microservices in our study, we acknowledge that there are pub-
lications prior to the time period considered in this mapping study that could be relevant to the emergence of microservices
and thereby to our research. Such publications do not fit our search strategy because they do not make direct reference to
microservices. Nevertheless, in this section we briefly summarize the examined literature in these areas indicating how
they can be relevant to our systematic mapping study objectives.

7.1 Research fields relevant to understanding the microservice transition

Even among microservice adopters, there are still debates over distinguishing SOAs from microservice
architectures.4,38,39,175,179,208-210 Therefore, we infer that contributions defining the properties and challenges of adopting
SOA architectures can be relevant to understanding the transition to microservices.

HASSAN et al. 1667

Seminal work defines SOA as an architectural style which can guide business process definition211-216 and support
“rapid, low-cost composition of distributed applications (p1 of References 217-219).” The SOA style was introduced
to address architectural complexity, redundant programming and inconsistent interfaces.220,221 In SOAs a service is a
self-describing unit that “consists of a contract, one or more interfaces and an implementation (p57 of Reference 222).”
SOAs in turn comprise an application frontend, services, a service repository and enterprise service bus.

Despite the resemblance between microservices and SOAs, there is a subtle distinction we infer from our microservi-
tization definition. The distinction comes from:3 (i) the potential of microservices as autonomous fine-grained
computational units with lightweight communication mechanisms rather than service buses and, (ii) the operational
and organizational flexibility enhanced by microservitization. Further elaboration of these points is presented in
Reference 223.

7.2 Research fields relevant to understanding the microservice granularity problem

Modeling microservice granularity can be inspired by architectural modelling approaches—a wide research field, where
contributions capture different notions of the architecture at varying levels of abstraction.224 Domain-driven modeling is
the most relevant to the modeling approach we describe in Section 4.2 because it strives for logical isolation of business
functionalities.29,225 However, domain-driven modeling is more concerned about the relationships between functional
boundaries rather than their scope. In essence, domain-driven modeling can inform the structural rather than behavioral
aspect of modeling microservices.

The Zachman framework226 provides a comprehensive guide to the different dimensions and perspectives for archi-
tectural modeling. Two dimensions in this framework are aligned with the modeling approach we call in Section 4.2: what
the model units are and where these units are located relative to each other. We call for a modeling approach that explic-
itly captures what each microservice is concerned about and helps define where the business functionalities encapsulated
by the microservice are located relative to each other.

A more dynamic architectural modeling approach is feature modeling,227 where an architecture is defined as a set of
variability points, the candidates for each variability point and the rules constricting the dependencies across variability
points. We appreciate this modeling technique is useful for formulating architectural decision-making problems. How-
ever, we would need to leverage such concept to focus on microservice boundaries being the variability point. While
dependency rules in a feature model can give an insight about microservice granularity, they do not explicitly model it.
ExecUtable RuntimE MegAmodels (EUREMA)228 provides a yet more powerful dynamic modeling technique. Here an
adaptation engine contains a runtime model which represents the evolution of the system as well as adaptation activi-
ties to be executed on that model. The link between the adaptation activities and the runtime model is expressed using
runtime mega-models. Similar to feature modelling, EUREMA needs to capture the notion of microservice boundaries
more explicitly.

Boundaries are modelled more explicitly in design structure matrices (DSMs).229 Modularity metrics230 can be used
to assess the degree of interdependence across these boundaries. We have not seen a dynamic application of DSMs that
captures the changes in these dependencies across a time unit (eg, release cycles).

Since we call for objective reasoning about microservice granularity adaptation, design metrics can inspire this
requirement since they provide an objective way to capturing attributes of a design decision. Effort-based metrics231 eval-
uate software development and maintenance efforts when a transition is made from centralised to distributed system
architectures.232 By analogy, an objective way is needed to evaluate development and maintenance costs when microser-
vice granularity is adapted. Metrics related to cohesion, coupling and visibility of system components are presented and
visualized in References 232,233, which can be used to assess the impact of granularity adaptation on the microservice
architecture’s modularity.

Since reasoning about microservice granularity is in essence a dynamic architectural design decision problem, several
software engineering fields can be relevant to it. Architectural analysis methods, architectural design patterns, service
composition and orchestration approaches, runtime architectural adaptation, architectural refactoring and feedback con-
trol loops are only some of the relevant fields. In the following subsections we categorise contributions in these fields
according to their level of autonomy:

• Manual contributions with full reliance on the software architect and/or stakeholders (eg, architectural design
patterns)

1668 HASSAN et al.

• Partially autonomous contributions where there is an autonomous agent but the software architect still makes the final
decision regarding the optimal architecture (eg, interactive service orchestration and/or composition)

• Fully autonomous contributions where the decision-making process and executing the decision are fully handled by
an autonomous agent (eg, feedback control loops, online architectural refactoring)

7.2.1 Manual contributions

Out of the approaches in this subsection, the most cost- and value-aware approaches we examined are.234-236 Refactor-
ing the architecture according to patterns234 or to introduce modularity236 are regarded as value-bearing investments.235

However, these approaches are only applied statically at design time. In this paper, we call for a similar view for reasoning
about microservice granularity.

In Reference 237, a cost benefit analysis method (CBAM) is proposed as a generic architecture evaluation method
which utilizes techniques in decision analysis, optimization, and statistics to evaluate architectural design decisions. How-
ever, CBAM does not dynamically track and update the added value of architectural decisions. These dynamic updates
are critical to the nature of the microservice granularity problem.

In Reference 238, the net benefit of a software is calculated by deducting its total costs from the total benefit. These
are manually elicited and monetised from software architects through a series of questions (eg, “what is the status of
the environment without the system?”). To our knowledge, this approach, however, does not consider the uncertainty
in the answers to these questions nor does it update them at runtime. In Reference 239 the predictive analysis of design
captures the value-driven impact of architectural decisions as multidimensional normalized, weighted cost, and value
vectors. Therefore, it can only provide static objective decision support for reasoning about microservice granularity.

The techniques in Reference 240 present different architectural evaluation methods and their motivations. Software
Architecture Analysis for Evolution and Reusability (SAAMER), Scenario-Based Architecture Re-engineering (SBAR) and
Architecture Level Prediction of Software Maintenance (ALPSM) in particular take an objective approach to architectural
evaluation.

SBAR captures the runtime nature of decision-making by providing different quality attribute evaluation techniques
depending on whether the quality attribute is concerned with the “development” of the system (ie, design time, such
as reusability, which is handled by scenario-based evaluation) or the “operation” of the system (ie, runtime, such as
performance, which is handled by simulation-based evaluation). SAAMER on the other hand partially addresses granu-
larity problem by analyzing the level of interaction between different scenarios of the system as a means of assessing the
level of functionality isolation in the system. Nevertheless, both methods have not been explicitly applied in a dynamic
environment to our knowledge.

ALPSM and CBAM take a value-driven approach to the evaluation which makes them more systematic architectural
evaluation approaches than SAAMER and SBAR. Furthermore, ALPSM uses probabilities to capture the likelihood of the
impact of scenarios and CBAM captures the uncertainty the architectural analysis. ALPSM and CBAM therefore partially
capture uncertainty, although they do not operate at runtime and thereby they suffer from the limitation of design-time
analysis.

Classical design patterns presented in Reference 241 extensively study creational (concerned with object instantia-
tion), structural (concerned with relationships between objects) and behavioral patterns (concerned with coordination
between objects). These patterns are further categorized according to their static or runtime nature. In that context, rea-
soning about microservice granularity can benefit from runtime creational design patterns. However, the design patterns
of that category in Reference 241 do not capture the scope—boundary—where a pattern can be enforced. Service workflow
patterns have been presented in a seminal work242 which implicitly discussed the issue of granularity is SOAs. However,
we envision that the distinction between microservices and SOAs calls for explicitly addressing granularity adaptation
decisions in the context of microservice constraints.

7.2.2 Partially autonomous contributions

In References 243,244, pattern-based engines are proposed to synthesize a composition of atomic and composite ser-
vices. However, we envision that reasoning about microservice granularity needs to be grounded on objective rather than

HASSAN et al. 1669

pattern-based evaluation. In References 245,246, a microservice-specific approach for addressing the microservice gran-
ularity problem is proposed which relies on microservice web application log mining to extract the usage pattern and
then making adaptive decisions regarding microservice granularity to ensure an economically sustainable architecture.
We acknowledge this work is very closely related to the decision support called for in this paper. Nevertheless, it does not
explicitly analyze the value-driven implications of such adaptive decisions as we call for in Section 4.2.

7.2.3 Fully autonomous contributions

The closest fully autonomous contribution to the effective decision support we call for in Section 4.2 is the
ASTRO-CAptEvo orchestration framework.247 It is a runtime framework that allows partial definition of business pro-
cesses for service-based systems at design-time. Subsequently, the framework orchestrates “automatically composing the
currently available services, provided by other actors and systems, according to the execution context and the goal of
the process to be refined” using state transition systems. This framework takes a runtime approach to decision-making.
However, the decision problem targeted by ASTRO-CAptEvo is service composition rather than microservice granularity.
Moreover, ASTRO-CAptEvo does not consider objectively reason about composing the available services.

The Self-Serv framework presented in Reference 248 facilitates composite web service execution through peer-to-peer
message exchange between coordination agents, which manage the service composition according to a static state chart.
This framework can be utilised to address microservice granularity adaptation, but the knowledge that drives the service
composition is static, meaning the runtime nature of the granularity problem is not captured in this framework.

Reputation-based dynamic service configuration techniques such as Reference 249 use a policy language to capture
service consumers’ and providers’ profiles and then utilize these profiles to dynamically configure an optimal concrete
service architecture. The work in Reference 250 leverages on the concept of reputation by capturing trust in the feedback
given regarding the services. In particular, a model is proposed to aggregate feedback from several consumers of a service
to reduce the effect of biased feedback. In both cases, a subjective user profile is used to drive the composition rather than
an objective value- and cost-driven approach.

Case-based reasoning about concrete service composition is presented in Reference 251 where a solution space of
composite services is formalized using recursive tuples of services. An agent then synthesises the optimal service decom-
position given a request for services from the user which are then bound at runtime to concrete services fetched from a
registry. A distinction is therefore made here between concrete service selection and the higher level composition of ser-
vices; this can be utilised to address the granularity problem. However, this solution does not capture the dynamic nature
of the microservice granularity problem.

Service composition techniques based on model checking252-254 dynamically adapt probabilistic models of the sys-
tem according to runtime changes in the scenarios surrounding the system or runtime changes in the requirements of
the system. In Reference 254 Bayesian learning improves service composition synthesis process through runtime knowl-
edge updates about the system’s behavior over its lifetime. In Reference 253 an abstract service composition is mapped
to a concrete service composition at runtime. The field of model-checking therefore is an attractive one for runtime
decision-making. Such contributions however need to be leveraged for the specific problem we are concerned with (ie,
the granularity of microservices).

Similar to the field of model checking is runtime architecture modeling. Several contributions in this field manifest
runtime changes to the architecture.228,255-263 Other contributions are catered for systems which exhibit a similar level of
dynamism to microservices.264-266 However, these contributions would need to be leveraged with objective reasoning that
considers both the added value and cost of granularity adaptation.

Another approach of an autonomous solution is dynamic service formation rather than dynamic service composition.
Frameworks such as References 267,268 provide means to dynamically produce web service specifications conforming to
a service composition. These approaches can be utilized to complement the decision support we call for in this paper.

The runtime, uncertain context of microservice granularity adaptation calls for support similar to that provided by
engineering self-adaptivity3,191 into an architecture. The role of a self-adaptive solution is to refine and update at runtime
the architects’ design-time expectations about the architecture’s behavior. There are several mechanisms which can be
adopted in this solution.269-273 Underlying most of them is the concept of feedback control loops274,275 which can be used
“to Monitor, Analyse, Plan and Execute adaptations[p16 of Reference 276]” in a system regarding trade-offs of concern
(the phases of this loop are abbreviated as the MAPE loop). The knowledge learnt about the system needs to be maintained
in a knowledge base (the phases of this loop are abbreviated as the MAPE-K271).

1670 HASSAN et al.

Control loops can be composed in a centralized, hierarchical, master-slave, or fully decentralized pattern.273 Each
pattern varies in which components of the architecture carry out which phase(s) of the control loop. The centralized
pattern is more suitable for monolithic architectures. In a hierarchical pattern, the full MAPE loop is effected at individual
services, with higher level services having a more general view of the architecture. The individual service MAPE loops
pass information to the higher level loops at short time intervals. Although this pattern is well-suited to addressing the
trade-offs of concern here, its only shortcoming is deciding what the higher level component with the global view of
the architecture should comprise and the possibility of this service creating a bottleneck. A variant of the hierarchical
pattern is the master-slave pattern where the individual services only monitor and execute while a higher level service
comprises the analysis and planning phases. Although more lightweight than the hierarchical pattern, the master/slave
pattern suffers from the same shortcomings as the hierarchical pattern. The decentralized pattern277-280 on the other
hand takes away the need for a service with a global view of the control loop. The MAPE loop is implemented in each
service and information is passed across the services for decentralized management. The major challenge of this pattern
is guaranteeing a consistent view of the system and its environment across all the control loops.273 However, this pattern
is the most aligned with the autonomy of microservice architectures and the scale at which microservices operate.

Runtime architectural adaptation approaches have been proposed before in the Rainbow framework271 which is
the most aligned with the concept of feedback loops. The Rainbow framework provides a reusable solution to induce
self-adaptivity into a system in a cost-aware manner. However, it is debatable whether dynamically adapting the level
of granularity of a microservice can be captured using the Rainbow framework. This is because the solution space here
varies regarding the number of services used and the interaction patterns between them. To our knowledge, the Rainbow
framework has not been applied to such a setting before. Another prominent approach is the architectural refactoring
approach281 where a set of anti-patterns is proposed which can be detected dynamically and used to trigger refactoring an
architecture. This approach has as its main motive enhancing the modularity of the architecture rather than reasoning
about modularity in a objective manner.

Realising microservice granularity adaptation involves changes to a deployed architecture. These activities are sim-
ilar to those underlying the field of online architectural refactoring. Several contributions in this field pave the way to
automated online architectural refactoring282-288 and modeling transformations.229,289 These contributions are driven by
meeting a specific architectural design pattern, but they do not objectively reason about granularity adaptation.

In the field of AI planning, an ontology-based approach to architectural adaptation is proposed.290 A shared ontology
of generic “procedures” (or templates) is produced which the stakeholder can choose from at run-time. An agent then
executes this procedure customizing it depending on the scenario in which the system will operate. It is appreciated that
the use of ontologies promotes sharing knowledge across across architects. However, we envision that the decision support
we are calling for in this paper can promote knowledge sharing and profiling to inform reasoning about microservice
granularity.

8 CONCLUSION

In this paper we report on a systematic mapping study to consolidate various views, principles, methods and tech-
niques that are commonly adopted to assist the transition to microservices. We systematically describe the study’s process
and report its results. We contribute a working definition capturing the fundamentals of the transition; we term it as
microservitization. Microservitization is a form of servitization181,184 where services/components are transformed into
microservices — a more fine-grained and autonomic form of services—to introduce added value to the architecture.3
Microservitization is also an example of a paradigm shift since it involves a dramatic change to the way technical activi-
ties are carried out and aligned with a microservice adopter’s business objectives. We then shed light on a fundamental
problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This
study has reviewed and identified gaps in the state-of-the-art and -practice that relate to the modeling approaches, aspects
considered, guidelines, and processes used to reason about microservice granularity. The identified gaps pave the way to
opportunities for future research and development related to reasoning about microservice granularity.

In particular, we identify there is room for future research regarding:

• A systematic architecture-oriented modeling support for microservice granularity that facilitates runtime analysis of
microservice granularity in a systematic architecture-oriented manner.

HASSAN et al. 1671

• A dynamic architectural evaluation approach to reason about the cost and added value of granularity adaptation.
• Effective decision support to inform reasoning about microservice granularity at runtime.

Moreover, the findings of our study can be further disciplined in the future both horizontally and vertically. Horizon-
tal disciplining entails including/excluding more microservitization activities (eg, securing communication links, cloud
resource scheduling and data management) and more quality attributes related to reasoning about granularity (eg, secu-
rity). Vertical disciplining entails using other evidence-based approaches which extract evidence from multiple sources
(eg, interviewing microservice practitioners, industrial case studies).

ORCID
Sara Hassan https://orcid.org/0000-0001-7481-0434

REFERENCES
1. Dehghani Z, Zhamak dehghani real world microservices: lessons from the frontline. Youtube; 2015. https://youtu.be/hsoovFbpAoE.
2. Probst K, Becker J. Engineering trade-offs and the netflix API re-architecture; 2016. https://medium.com/netflix-techblog/engineering-

trade-offs-and-the-netflix-api-re-architecture-64f122b277dd.
3. Hassan S, Bahsoon R. Microservices and their design trade-offs: a self-adaptive roadmap. Paper presented at: Proceedings of the 2016

IEEE International Conference on Services Computing (SCC); 2016:813-818. doi:https://doi.org/10.1109/SCC.2016.113.
4. Martin LJ. Microservices a definition of this new architectural term; 2014. http://martinfowler.com/articles/microservices.html.
5. Newman S. Microservices talk with Sam Newman; 2015. https://www.youtube.com/watch?v=GDVcUM5wbxU.
6. Newman S. Practical considerations for microservice architectures. Part 2. (Sam Newman, UK); 2014. https://www.youtube.com/watch?

v=cU0J0w6sFoA.
7. Daya S, Van Duy N, Eati K, et al. Microservices from Theory to Practice: Creating Applications in Ibm Bluemix Using the Microservices

Approach. Indiana, United States of America: IBM Redbooks; 2015 https://books.google.co.uk/books?id=eOZyCgAAQBAJ.
8. George F, Challenges in implementing microservices by Fred George; 2015.
9. OASIS AMQP is the internet protocol for business messaging; 2018. https://www.amqp.org/about/what.

10. Wagner T Microservices without the servers; 2015. https://aws.amazon.com/blogs/compute/microservices-without-the-servers/.
11. Kulkarni N, Dwivedi V. The role of service granularity in a successful SOA realization a case study. Paper presented at: Proceedings of

the 2008 IEEE Congress on Services - Part I; 2008:423-430. doi:https://doi.org/10.1109/SERVICES-1.2008.86.
12. Kalske M, Mäkitalo N, Mikkonen T. Challenges when moving from monolith to microservice architecture. In: Garrigos I, Wimmer M,

eds. Current Trends in Web Engineering. Cham: Springer International Publishing; 2018:32-47.
13. Alshuqayran N, Ali N, Evans R. A systematic mapping study in microservice architecture. Paper presented at: Proceedings of the 2016

IEEE 9th International Conference on Service-Oriented Computing and Applications; 2016.
14. Kitchenham B. Guidelines for performing Systematic Literature Reviews in Software Engineering. United Kingdom: Keele University and

University of Durham; 2007.
15. Hassan S, Ali N, Bahsoon R. Microservice ambients: an architectural meta-modelling approach for microservice granularity. Paper

presented at: Proceedings of the 2017 IEEE International Conference on Software Architecture (ICSA); 2017:1-10.
16. Petersen K, Vakkalanka S, Kuzniarz L. Guidelines for conducting systematic mapping studies in software engineering: an update.

Inf Softw Technol. 2015;64:1-18. http://www.sciencedirect.com/science/article/pii/S0950584915000646, https://doi.org/10.1016/jinfsof.
2015.03.007.

17. Trends G Microservices - explore; https://trends.google.com/trends/explore?date=2013-01-01&q=Microservices.
18. Francesco PD, Malavolta I, Lago P. Research on architecting microservices: trends, focus, and potential for industrial adoption. Paper

presented at: Proceedings of the 2017 IEEE International Conference on Software Architecture (ICSA); 2017:21-30. doi:https://doi.org/
10.1109/ICSA.2017.24.

19. Perish, Publish or Perish; 1999. https://harzing.com/resources/publish-or-perish.
20. Petersen K, Feldt R, Mujtaba S, Mattsson M. Systematic mapping studies in software engineering. Paper presented at: Proceedings of the

12th International Conference on Evaluation and Assessment in Software Engineering Swindon, UK: BCS Learning & Development Ltd;
2008. p. 68–77. http://dl.acm.org/citation.cfm?id=2227115.2227123. doi:https://doi.org/10.1007/s00766-005-0021-6.

21. Wieringa R, Maiden N, Mead N, Rolland C. Requirements engineering paper classification and evaluation criteria: a proposal and a
discussion. Requir Eng. 2005;11(1):102-107. https://doi.org/10.1007/s00766-005-0021-6.

22. Behara DGK, Microservices Governance: A Detailed Guide. Bonn, Germany: LeanIX; 2018. https://blog.leanix.net/en/microservices-
governance.

23. Huston T, What is Microservice Architecture?. Massachusetts, United States of America: SmartBear; 2018. https://smartbear.com/learn/
api-design/what-are-microservices/.

24. Conway ME. How do Committees Invent. California, United States of America: Datamation; 1968.
25. Wasson M, Tam B, Designing Microservices: Continuous Integration. Washington, United States of America: Microsoft; 2018. https://docs.

microsoft.com/en-us/azure/architecture/microservices/ci-cd.

https://orcid.org/0000-0001-7481-0434
https://orcid.org/0000-0001-7481-0434
https://youtu.be/hsoovFbpAoE
https://medium.com/netflix%2010techblog/engineering%2010trade%2010offs%2010and%2010the%2010netflix%2010api%2010re%2010architecture%201064f122b277dd
https://medium.com/netflix%2010techblog/engineering%2010trade%2010offs%2010and%2010the%2010netflix%2010api%2010re%2010architecture%201064f122b277dd
https://doi.org/10.1109/SCC.2016.113
http://martinfowler.com/articles/microservices.html
https://www.youtube.com/watch?v=GDVcUM5wbxU
https://www.youtube.com/watch?v=cU0J0w6sFoA
https://www.youtube.com/watch?v=cU0J0w6sFoA
https://books.google.co.uk/books?id=eOZyCgAAQBAJ
https://www.amqp.org/about/what
https://aws.amazon.com/blogs/compute/microservices%2010without%2010the%2010servers/
https://doi.org/10.1109/SERVICES-1.2008.86
http://www.sciencedirect.com/science/article/pii/S0950584915000646
https://doi.org/10.1016/jinfsof.2015.03.007
https://doi.org/10.1016/jinfsof.2015.03.007
https://trends.google.com/trends/explore?date=2013-201001-201001-26q=Microservices
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1109/ICSA.2017.24
https://harzing.com/resources/publish%2010or%2010perish
http://dl.acm.org/citation.cfm?id=2227115.2227123
https://doi.org/10.1007/s00766-005-0021-6
https://doi.org/10.1007/s00766-005-0021-6
https://blog.leanix.net/en/microservices%2010governance
https://blog.leanix.net/en/microservices%2010governance
https://smartbear.com/learn/api%2010design/what%2010are%2010microservices/
https://smartbear.com/learn/api%2010design/what%2010are%2010microservices/
https://docs.microsoft.com/en%2010us/azure/architecture/microservices/ci%2010cd
https://docs.microsoft.com/en%2010us/azure/architecture/microservices/ci%2010cd

1672 HASSAN et al.

26. Ciuffoletti A. Automated deployment of a microservice-based monitoring infrastructure. Proc Comput Sci. 2015;68:163-172. http://www.
sciencedirect.com/science/article/pii/S187705091503077X. https://doi.org/10.1016/j.procs.2015.09.232.

27. Sacolick I. What is CI/CD? Continuous integration and continuous delivery explained; 2018. https://www.infoworld.com/article/
3271126/ci-cd/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html.

28. ElectricCloud, Deployment Automation. http://electric-cloud.com/wiki/display/releasemanagement/Deployment+Automation#
DeploymentAutomation-DeploymentAutomationOverview.

29. Evans EJ. Domain-Driven Design: Tackling Complexity in the Heart of Software. Boston, United States of America: Addison-Wesley
Professional; 2004.

30. Novatec Introduction to microservices testing and consumer driven contract testing with PACT; 2017. https://blog.novatec-gmbh.de/
introduction-microservices-testing-consumer-driven-contract-testing-pact/.

31. Namiot D. On micro-services architecture. Int J Open Inf Technol. 2014;09(2):24-27.
32. Krause L. Microservices: patterns and applications designing fine-grained services by applying patterns; 2015. https://books.google.co.

uk/books?id=dd5-rgEACAAJ.
33. Haupt F, Leymann F, Scherer A, Vukojevic-Haupt K. A framework for the structural analysis of REST APIs. Paper presented at:

Proceedings of the 2017 IEEE International Conference on Software Architecture (ICSA); 2017:55-58.
34. Haywood D, In Defence of the Monolith, Part 1. Toronto, Canada: InfoQ; 2017. https://www.infoq.com/articles/monolith-defense-part-1.
35. Miles R. Antifragile software building adaptable software with microservices. Leanpub; 2016.
36. Wolff E. Microservices: Flexible Software Architecture. London, United Kingdom: Pearson Education; 2016. https://books.google.co.

uk/books?id=zucwDQAAQBAJ.
37. Pahl C, Jamshidi P. Microservices: a systematic mapping study. Paper presented at: Proceedings of the Proceedings of the 6th International

Conference on Cloud Computing and Services Science - Volume 1 and 2 Portugal: SCITEPRESS - Science and Technology Publications,
Lda; 2016:137-146. https://doi.org/10.5220/0005785501370146.

38. Nygard M. Release it! design and deploy production-ready software. Release it! design and deploy production-ready software. United States
of America: Pragmatic Bookshelf; 2007.

39. Daya S, Van Duy N, Eati K, Ferreira CM, Glozic D, Gucer V. Microservices from Theory to Practice: Creating Applications in IBM Bluemix
Using the Microservices Approach. Indiana, United States of America: IBM Redbooks; 2016 http://www.redbooks.ibm.com/abstracts/
sg248275.html?Open.

40. Rodger R. The Tao of Microservices. Manning Publications Company; 2017. https://books.google.co.uk/books?id=uosOkAEACAAJ.
41. Fairbanks G. Just enough software architecture: a risk-driven approach. Colorado, United States of America: Marshall & Brainerd; 2010

https://books.google.co.uk/books?id=5UZ-AQAAQBAJ.
42. Rajasekar A, Wan M, Moore R, Schroeder W. Micro-services: a service-oriented paradigm for scalable, distributed data management.

Data Intensive Distributed Computing: Challenges and Solutions for Large-scale Information Management. Pennsylvania, United States of
America: IGI Global; 2012.

43. Cruz P, Astudillo H, Hilliard R, Collado M. Assessing migration of a 20-year-old system to a micro-service platform using ATAM. Paper
presented at: Proceedings of the 2019 IEEE International Conference on Software Architecture Companion (ICSA-C); 2019:174-181.

44. Riahi T, Ashtiani M. A distributed and agent-oriented simulation framework based on the micro-service architecture; 2019.
45. Zimmermann O. Microservices tenets. Comput Sci Res Dev. 2017;32(3):301-310. https://doi.org/10.1007/s00450-016-0337-0.
46. Killalea T. The hidden dividends of microservices. Commun ACM. 2016;59(8):42-45. https://doi.org/10.1145/2948985.
47. Pautasso C, Zimmermann O, Amundsen M, Lewis J, Josuttis N. Microservices in practice, Part 1: reality check and service design. IEEE

Softw. 2017;34(1):91-98. https://doi.org/10.1109/MS.2017.24.
48. Balalaie A, Heydarnoori A, Jamshidi P. Microservices architecture enables DevOps: migration to a cloud-native architecture. IEEE Softw.

2016;33(3):42-52. https://doi.org/10.1109/MS.2016.64.
49. Richardson C, Smith F, Microservices: From Design to Deployment. San Francisco, United States of America: Nginx; 2016.
50. O’Connor RV, Elger P, Clarke PM. Continuous software engineering — a microservices architecture perspective. J Softw Evolut Process.

2017;29(11):e1866. https://doi.org/10.1002/smr.1866.
51. Zhou X, Peng X, Xie T, et al. Benchmarking microservice systems for software engineering research. Paper presented at: Proceedings of

the ICSE ’18 Companion; 2018.
52. Dragoni N, Dustdar S, Larsen ST, Mazzara M. Microservices: migration of a mission critical system. CoRR. 2017;abs/1704.04173 http://

arxiv.org/abs/1704.04173.
53. Wiggins A. The Twelve-Factor App; 2017.
54. Asik T, Selcuk YE. Policy enforcement upon software based on microservice architecture. Paper presented at: Proceedings of the

2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA); 2017:283-287.
doi:https://doi.org/10.1109/SERA.2017.7965739.

55. Betts T, Q&A with Susan Fowler on Production-Ready Microservices. Toronto, Canada: InfoQ; 2017. https://www.infoq.com/news/2017/
01/production-ready-microservices.

56. Fisher T, Digital Transformation is underpinned by the Enterprise IT Landscape. Paris, France: Capgemini; 2014. https://www.capgemini.
com/resources/digital-transformation-is-underpinned-by-the-enterprise-it-landscape/.

57. Fabrizio Montesi DST. Packaging microservices (work in progress). IFIP International Federation for Information Processing. New York,
NY: Springer; 2017:131-137.

http://www.sciencedirect.com/science/article/pii/S187705091503077X
http://www.sciencedirect.com/science/article/pii/S187705091503077X
https://doi.org/10.1016/j.procs.2015.09.232
https://www.infoworld.com/article/3271126/ci%2010cd/what%2010is%2010cicd%2010continuous%2010integration%2010and%2010continuous%2010delivery%2010explained.html
https://www.infoworld.com/article/3271126/ci%2010cd/what%2010is%2010cicd%2010continuous%2010integration%2010and%2010continuous%2010delivery%2010explained.html
http://electric%2010cloud.com/wiki/display/releasemanagement/Deployment%2BAutomation#DeploymentAutomation%2010DeploymentAutomationOverview
http://electric%2010cloud.com/wiki/display/releasemanagement/Deployment%2BAutomation#DeploymentAutomation%2010DeploymentAutomationOverview
https://blog.novatec%2010gmbh.de/introduction%2010microservices%2010testing%2010consumer%2010driven%2010contract%2010testing%2010pact/
https://blog.novatec%2010gmbh.de/introduction%2010microservices%2010testing%2010consumer%2010driven%2010contract%2010testing%2010pact/
https://books.google.co.uk/books?id=dd5%2010rgEACAAJ
https://books.google.co.uk/books?id=dd5%2010rgEACAAJ
https://www.infoq.com/articles/monolith%2010defense%2010part%20101
https://doi.org/10.5220/0005785501370146
http://www.redbooks.ibm.com/abstracts/sg248275.html?Open
http://www.redbooks.ibm.com/abstracts/sg248275.html?Open
https://books.google.co.uk/books?id=uosOkAEACAAJ
https://books.google.co.uk/books?id=5UZ%2010AQAAQBAJ
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1145/2948985
https://doi.org/10.1109/MS.2017.24
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1002/smr.1866
http://arxiv.org/abs/1704.04173
http://arxiv.org/abs/1704.04173
https://doi.org/10.1109/SERA.2017.7965739
https://www.infoq.com/news/2017/01/production%2010ready%2010microservices
https://www.infoq.com/news/2017/01/production%2010ready%2010microservices
https://www.capgemini.com/resources/digital%2010transformation%2010is%2010underpinned%2010by%2010the%2010enterprise%2010it%2010landscape/
https://www.capgemini.com/resources/digital%2010transformation%2010is%2010underpinned%2010by%2010the%2010enterprise%2010it%2010landscape/

HASSAN et al. 1673

58. Bryant D. Shrinking microservices to functions: Adrian cockcroft discusses serverless at microXchg; 2017. https://www.infoq.com/news/
2017/02/microxchg-microservice-functions.

59. Sanjeev-Shareema BC. DevOps for Dummies. 3rd ed. Indiana, United States of America: IBM Limited Edition. https://www.ibm.com/
ibm/devops/us/en/resources/dummiesbooks/.

60. Curlett C, Tame Microservices Complexity with APIs. Massachusettes, United States of America: InfoWorld; 2016. https://www.infoworld.
com/article/3111349/application-development/tame-microservices-complexity-with-apis.html.

61. Tonse S. Scalable microservices at netflix. Challenges and Tools of the Trade. Toronto, Canada: InfoQ; 2015. http://www.infoq.com/
presentations/netflix-ipc.

62. Olliffe G, Microservices: Building Services with the Guts on the Outside; 2015. https://blogs.gartner.com/gary-olliffe/2015/01/30/
microservices-guts-on-the-outside/.

63. Chen L. Microservices: architecting for continuous delivery and DevOps. Paper presented at: Proceedings of the IEEE International
Conference on Software Architecture (ICSA 2018); 2018.

64. Florio L, Nitto ED. Gru: an approach to introduce decentralized autonomic behavior in microservices architectures. Paper presented at:
Proceedings of the 2016 IEEE International Conference on Autonomic Computing (ICAC); 2016:357-362. doi:https://doi.org/10.1109/
ICAC.2016.25.

65. Villamizar M, Garcés O, Ochoa L, et al. Infrastructure cost comparison of running web applications in the cloud using AWS lambda and
monolithic and microservice architectures. Paper presented at: Proceedings of the 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid); vol 2016, 2016:179-182. doi:https://doi.org/10.1109/CCGrid.016.37.

66. Truong HL, Klein P. DevOps contract for assuring execution of IoT microservices in the edge. Internet of Things. 2020;9:100150 http://
www.sciencedirect.com/science/article/pii/S2542660519301726. https://doi.org/10.1016/j.iot.2019.100150.

67. Taha MB, Talhi C, Ould-Slimanec H. A cluster of CP-ABE microservices for VANET. Proc Comput Sci. 2019;155:441-448. http://www.
sciencedirect.com/science/article/pii/S1877050919309755. https://doi.org/10.1016/j.procs.2019.08.061.

68. Khazaei H, Barna C, Beigi-Mohammadi N, Litoiu M. Efficiency analysis of provisioning microservices. Paper presented at: Proceedings
of the 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom); 2016:261-268. doi:https://doi.
org/10.1109/CloudCom.2016.0051.

69. Montesi F, Weber J. Circuit breakers, discovery, and API gateways in microservices. CoRR. 2016;abs/1609.05830 http://arxiv.org/abs/
1609.05830.

70. Zheng T, Zhang Y, Zheng X, Fu M, Liu X. BigVM: a multi-layer-microservice-based platform for deploying SaaS. Paper presented at:
Proceedings of the 2017 Fifth International Conference on Advanced Cloud and Big Data (CBD); 2017:45-50. doi:https://doi.org/10.1109/
CBD.2017.16.

71. Brilhante J, Costa R, Maritan T. Asynchronous queue based approach for building reactive microservices. Paper presented at: Proceedings
of the 23rd Brazillian Symposium on Multimedia and the Web; 2017:373-380; New York, NY, ACM. https://doi.org/10.1145/3126858.
3126873.

72. Farcic V. The DevOps 2.0 toolkit automating the continuous deployment pipeline with containerized microservices. Leanpub; 2018.
73. Cerny T, Donahoo MJ, Trnka M. Contextual understanding of microservice architecture: current and future directions. SIGAPP Appl

Comput Rev. 2018;17(4):29-45. https://doi.org/10.1145/3183628.3183631.
74. Wizenty P, Sorgalla J, Rademacher F, Sachweh S. MAGMA: build management-based generation of microservice infrastructures. Paper

presented at: Proceedings of the 11th European Conference on Software Architecture: Companion; 2017:61-65; New York, NY, ACM.
https://doi.org/10.1145/3129790.3129821.

75. Richter D, Konrad M, Utecht K, Polze A. Highly-available applications on unreliable infrastructure: microservice architectures in practice.
Paper presented at: Proceedings of the IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C);
vol 2017, 2017:130-137. doi:https://doi.org/10.1109/QRS-C.2017.28.

76. Toffetti G, Brunner S, Blöchlinger M, Dudouet F, Edmonds A. An architecture for self-managing microservices. Paper presented at:
Proceedings of the 1st International Workshop on Automated Incident Management in Cloud; 2015:19-24; New York, NY, ACM. https://
doi.org/10.1145/2747470.2747474

77. Zeiner H, Goller M, Expósito Jiménez VJ, Salmhofer F, Haas W. SeCoS: web of things platform based on a microservices architecture and
support of time-awareness. Elektrotechnik und Informationstechnik. 2016;133(3):158-162. https://doi.org/10.1007/s00502-016-0404-z.

78. Rajavaram H, Rajula V, Thangaraju B. Automation of microservices application deployment made easy by rundeck and kubernetes.
Paper presented at: Proceedings of the 2019 IEEE International Conference on Electronics, Computing and Communication Technologies
(CONECCT); 2019:1-3.

79. Höhr S, Tasci T, Verl A. Realization of data analytics projects in manufacturing using a microservice-based approach. Paper presented
at: Proceedings of the 2019 IEEE International Conference on Mechatronics (ICM), vol. 1; 2019:321-326.

80. Porrmann T, Essmann R, Colombo AW. Development of an event-oriented, cloud-based SCADA system using a microservice architecture
under the RAMI4.0 specification: lessons learned. Paper presented at: Proceedings of the IECON 2017 - 43rd Annual Conference of the
IEEE Industrial Electronics Society; 2017:3441-3448. doi:https://doi.org/10.1109/IECON.2017.8216583.

81. Oksanych I, Shevchenko I, Shcherbak I, Shcherbak S. Development of specialized services for predicting the business activity indicators
based on micro-service architecture. Inf Technol. 2017.2 84–95.

82. Sharma S. Mastering Microservices with Java 9: Build Domain-Driven Microservice-Based Applications with Spring. Birmingham, United
Kingdom: Spring Cloud, and Angular Packt Publishing; 2017. https://books.google.co.uk/books?id=WsxPDwAAQBAJ.

https://www.infoq.com/news/2017/02/microxchg%2010microservice%2010functions
https://www.infoq.com/news/2017/02/microxchg%2010microservice%2010functions
https://www.ibm.com/ibm/devops/us/en/resources/dummiesbooks/
https://www.ibm.com/ibm/devops/us/en/resources/dummiesbooks/
https://www.infoworld.com/article/3111349/application%2010development/tame%2010microservices%2010complexity%2010with%2010apis.html
https://www.infoworld.com/article/3111349/application%2010development/tame%2010microservices%2010complexity%2010with%2010apis.html
http://www.infoq.com/presentations/netflix%2010ipc
http://www.infoq.com/presentations/netflix%2010ipc
https://blogs.gartner.com/gary%2010olliffe/2015/01/30/microservices%2010guts%2010on%2010the%2010outside/
https://blogs.gartner.com/gary%2010olliffe/2015/01/30/microservices%2010guts%2010on%2010the%2010outside/
https://doi.org/10.1109/ICAC.2016.25
https://doi.org/10.1109/ICAC.2016.25
https://doi.org/10.1109/CCGrid.016.37
http://www.sciencedirect.com/science/article/pii/S2542660519301726
http://www.sciencedirect.com/science/article/pii/S2542660519301726
https://doi.org/10.1016/j.iot.2019.100150
http://www.sciencedirect.com/science/article/pii/S1877050919309755
http://www.sciencedirect.com/science/article/pii/S1877050919309755
https://doi.org/10.1016/j.procs.2019.08.061
https://doi.org/10.1109/CloudCom.2016.0051
https://doi.org/10.1109/CloudCom.2016.0051
http://arxiv.org/abs/1609.05830
http://arxiv.org/abs/1609.05830
https://doi.org/10.1109/CBD.2017.16
https://doi.org/10.1109/CBD.2017.16
https://doi.org/10.1145/3126858.3126873
https://doi.org/10.1145/3126858.3126873
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3129790.3129821
https://doi.org/10.1109/QRS-C.2017.28
https://doi.org/10.1145/2747470.2747474
https://doi.org/10.1145/2747470.2747474
https://doi.org/10.1007/s00502-016-0404-z
https://doi.org/10.1109/IECON.2017.8216583

1674 HASSAN et al.

83. Rajasekar A, Russell T, Coposky J, et al. The integrated Rule-Oriented Data System (iRODS 4.0) Microservice Workbook. 1st ed. California,
United States of America: CreateSpace Independent Publishing Platform; 2015.

84. Mozaffari B. Microservice architecture building microservices with JBoss EAP 7. RedHat, 1.0 ed; 2016.
85. Terzić B, Dimitrieski V, Kordić S, Milosavljević G, Luković I. MicroBuilder: a model-driven tool for the specification of REST microservice

architectures. Enterprise Inf Syst. 2017;12:1034–1057.
86. Esposte AMD, Kon F, Costa FM, Lago N. InterSCity: a scalable microservice-based open source platform for smart cities. Paper presented

at: Proceedings of the 6th International Conference on Smart Cities and Green ICT; 2017.
87. Giallorenzo S, Lanese I, Mauro J, Gabbrielli M. Programming adaptive microservice applications: an AIOCJ tutorial. Behavioural Types:

From Theory to Tools. Paris, France: HAL Archives; 2017:147.
88. Sorgalla J. AjiL: a graphical modeling language for the development of microservice architectures. Extended Abstracts of the Microservices;

2017.
89. Andrawos M, Helmich M. Cloud Native Programming with Golang: Develop Microservice-Based High Performance Web Apps for the Cloud

with Go. Birmingham, United Kingdom: Packt Publishing; 2017. https://books.google.co.uk/books?id=NvNFDwAAQBAJ.
90. Ashikhmin N, Radchenko G, Tchernykh A. RAML-based mock service generator for microservice applications testing. In: Voevodin V,

Sobolev S, eds. Supercomputing. Cham: Springer International Publishing; 2017:456-467.
91. Chen H, Chen P, Yu G. A framework of virtual war room and matrix sketch-based streaming anomaly detection for microservice systems.

IEEE Access. 2020;8:43413-43426.
92. Lotz J, Vogelsang A, Benderius O, Berger C. Microservice architectures for advanced driver assistance systems: a case-study. Paper

presented at: Proceedings of the2019 IEEE International Conference on Software Architecture Companion (ICSA-C); 2019:45-52.
93. Huttunen J. Micro service testing practices in public sector software projects; 2017. https://aaltodoc.aalto.fi/handle/123456789/26673.
94. Schaevitz S. Deploying Changes to Production in the Age of the Microservice. Dublin: USENIX Association; 2017 https://www.usenix.org/

conference/srecon17europe/program/presentation/schaevitz.
95. Geerinck X, An architecture for resource analysis, prediction and visualization in microservice deployments; 2017. http://lib.ugent.be/

fulltxt/RUG01/002/367/136/RUG01-002367136_2017_0001_AC.pdf.
96. Flygare R, Holmqvist A. Performance characteristics between monolithic and microservice-based systems; 2017.
97. Bryant D, Observability and Avoiding Alert Overload from Microservices at the Financial Times. Toronto, Canada: InfoQ; 2017. https://

www.infoq.com/articles/observability-financial-times.
98. Janes A, Russo B. Automatic performance monitoring and regression testing during the transition from monolith to microservices.

Paper presented at: Proceedings of the 2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW);
2019:163-168.

99. Schulz H, Angerstein T, Okanović D, van Hoorn A. Microservice-tailored generation of session-based workload models for representative
load testing. Paper presented at: Proceedings of the 2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS); 2019:323-335.

100. Salvadori I, Oliveira BCN, Huf A, Inacio EC, Siqueira F. An ontology alignment framework for data-driven microservices. Paper presented
at: Proceedings of the 19th International Conference on Information Integration and Web-based Applications & Services; 2017:425-433.
https://doi.org/10.1145/3151759.3151793.

101. Kothawade P, Bhowmick PS. Cloud security: penetration testing of application in micro-service architecture and vulnerability assess-
ment; 2019:68.

102. Asenova M, Chrysoulas C. Personalized micro-service recommendation system for online news. Proc Comput Sci. 2019;160:610-615.
http://www.sciencedirect.com/science/article/pii/S1877050919317399.

103. Ji Z, Liu Y. A dynamic deployment method of micro service oriented to SLA. Int J Comput Sci Iss. 2016;13:8–14.
104. Soenen T, Tavernier W, Colle D, Pickavet M. Optimising microservice-based reliable NFV management orchestration architectures.

Paper presented at: Proceedings of the 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM); 2017:1-7.
doi:https://doi.org/10.1109/RNDM.2017.8093034.

105. Uhle J, On Dependability Modeling in a Deployed Microservice Architecture. Potsdam, Germany: Universitat Potsdam; 2014.
106. Rademacher F, Sachweh S, Zündorf A. Towards a UML profile for domain-driven design of microservice architectures. In: Cerone A,

Roveri M, eds. Software Engineering and Formal Methods. Cham: Springer International Publishing; 2018:230-245.
107. Nguyen P, Nahrstedt K. MONAD: self-adaptive micro-service infrastructure for heterogeneous scientific workflows. Paper presented at:

Proceedings of the 2017 IEEE International Conference on Autonomic Computing (ICAC); 2017:187-196. doi:https://doi.org/10.1109/
ICAC.2017.38.

108. Fowler M, Bounded Context. Illinois, United States of America: ThoughtWorks; 2014. https://martinfowler.com/bliki/BoundedContext.
html.

109. Kaiser S, Podjarny G, Levine I, Burgess M, Stenberg J. The Future of Microservices and Distributed Systems. London, UK: QCon London
Microservices Panel Discussion; 2018 https://www.infoq.com/news/2018/03/microservices-future.

110. Fowler M, Event Interception. Illinois, United States of America: ThoughtWorks; 2004. http://www.martinfowler.com/bliki/
EventInterception.html.

111. Wang P, Dong L, Xu Y, Liu W, Jing N. Clustering-based emotion recognition micro-service cloud framework for mobile computing. IEEE
Access. 2020;8:49695-49704.

112. Yang M, Huang M. An microservices-based openstack monitoring tool. Paper presented at: Proceedings of the 2019 IEEE 10th
International Conference on Software Engineering and Service Science (ICSESS); 2019:706-709.

https://aaltodoc.aalto.fi/handle/123456789/26673
https://www.usenix.org/conference/srecon17europe/program/presentation/schaevitz
https://www.usenix.org/conference/srecon17europe/program/presentation/schaevitz
http://lib.ugent.be/fulltxt/RUG01/002/367/136/RUG01%2010002367136_2017_0001_AC.pdf
http://lib.ugent.be/fulltxt/RUG01/002/367/136/RUG01%2010002367136_2017_0001_AC.pdf
https://www.infoq.com/articles/observability%2010financial%2010times
https://www.infoq.com/articles/observability%2010financial%2010times
https://doi.org/10.1145/3151759.3151793
http://www.sciencedirect.com/science/article/pii/S1877050919317399
https://doi.org/10.1109/RNDM.2017.8093034
https://doi.org/10.1109/ICAC.2017.38
https://doi.org/10.1109/ICAC.2017.38
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html
https://www.infoq.com/news/2018/03/microservices%2010future
http://www.martinfowler.com/bliki/EventInterception.html
http://www.martinfowler.com/bliki/EventInterception.html

HASSAN et al. 1675

113. Richardson C. Microservice Patterns. New York, United States of America: Manning Publications Company; 2018.
https://books.google.co.uk/books?id=UeK1swEACAAJ.

114. Fowler M, Event Collaboration. Illinois, United States of America: ThoughtWorks; 2006. https://martinfowler.com/eaaDev/
EventCollaboration.html.

115. Baraiya V, Singh V, netflix conductor: a microservices orchestrator; 2016. https://medium.com/netflix-techblog/netflix-conductor-a-
microservices-orchestrator-2e8d4771bf40.

116. Lv H, Zhang T, Zhao Z, Xu J, He T. The development of real-time large data processing platform based on reactive micro-service archi-
tecture. Paper presented at: Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC); vol. 1; 2020:2003–2006.

117. Gerking C, Schubert D. Component-based refinement and verification of information-flow security policies for cyber-physical microser-
vice architectures. Paper presented at: Proceedings of the 2019 IEEE International Conference on Software Architecture (ICSA);
2019:61-70.

118. Niu Y, Liu F, Li Z. Load balancing across microservices. Paper presented at: Proceedings of the IEEE International Conference on
Computer Communications; 2018.

119. Ismail U, Rolnick D, Fabijan D, Wallgren A. Challenges of micro-service deployments; 2016. http://techtraits.com/microservice.html.
120. Kukade PP, Kale PG. Auto-scaling of micro-services using containerization. Int J Sci Res (IJSR). 2015;4(9).1960–1963.
121. Bryant D, The Economics of Microservices: Phil Calçado Recommends Avoiding Microliths. Toronto, Canada: InfoQ; 2017:
122. Shoumik FS, Talukder MIMM, Jami AI, Protik NW, Hoque MM. Scalable micro-service based approach to FHIR server with golang and

No-SQL. Paper presented at: Proceedings of the 2017 20th International Conference of Computer and Information Technology (ICCIT);
2017:1-6. doi:https://doi.org/10.1109/ICCITECHN.2017.8281846.

123. Sami H, Mourad A, El-Hajj W. Vehicular-OBUs-as-on-demand-fogs: resource and context aware deployment of containerized
micro-services. IEEE/ACM Trans Netw. 2020;28(2):778-790.

124. Akbulut A, Perros HG. Performance analysis of microservice design patterns. IEEE Internet Comput. 2019;23(6):19-27.
125. Naily MA, Setyautami MRA, Muschevici R, Azurat A. A framework for modelling variable microservices as software product lines. In:

Cerone A, Roveri M, eds. Software Engineering and Formal Methods. Cham: Springer International Publishing; 2018:246-261.
126. Derakhshanmanesh M, Grieger M. Model-integrating microservices: a vision paper. Paper presented at: Proceedings of the Software

Engineering Workshops.
127. Rajagopalan S, Jamjoom H. App–bisect: autonomous healing for microservice-based apps. Paper presented at: Proceedings of the 7th

USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 15); 2015; Santa Clara, CA, USENIX Association. https://www.usenix.
org/conference/hotcloud15/workshop-program/presentation/rajagopalan.

128. Brogi A, Canciani A, Neri D, Rinaldi L, Soldani J. Towards a reference dataset of microservice-based applications. In: Cerone A, Roveri M,
eds. Software Engineering and Formal Methods. Cham: Springer International Publishing; 2018:219-229.

129. Song Z, Tilevich E. Equivalence-enhanced microservice workflow orchestration to efficiently increase reliability. Paper presented at:
Proceedings of the 2019 IEEE International Conference on Web Services (ICWS); 2019:426-433.

130. Ma M, Lin W, Pan D, Wang P. MS-Rank: multi-metric and self-adaptive root cause diagnosis for microservice applications. Paper
presented at: Proceedings of the2019 IEEE International Conference on Web Services (ICWS); 2019:60-67.

131. Kecskemeti G, Marosi AC, Kertesz A. The ENTICE approach to decompose monolithic services into microservices. Paper presented at:
Proceedings of the2016 International Conference on High Performance Computing Simulation (HPCS); 2016:591-596. doi:https://doi.
org/10.1109/HPCSim.2016.7568389.

132. LOFTIS H, Why Microservices Matter. San Francisco, United States of America: Heroku; 2015. https://blog.heroku.com/why_
microservices_matter.

133. Hasselbring W. Microservices for scalability: keynote talk abstract. Paper presented at: Proceedings of the 7th ACM/SPEC on International
Conference on Performance Engineering; 2016:133-134; New York, NY, ACM. https://doi.org/10.1145/2851553.2858659.

134. Klinaku F, Frank M, Becker S. CAUS: an elasticity controller for a containerized microservice. Paper presented at: Proceedings of the
Companion of the 2018 ACM/SPEC International Conference on Performance Engineering; 2018:93-98; New York, NY, ACM.

135. Alipour H, Liu Y. Online machine learning for cloud resource provisioning of microservice backend systems. Paper presented at: Pro-
ceedings of the2017 IEEE International Conference on Big Data (Big Data); 2017:2433-2441. doi:https://doi.org/10.1109/BigData.2017.
8258201.

136. Oksa M, Web API development and integration for microservice functionality in web applications; 2016. http://urn.fi/URN:NBN:fi:jyu-
201612215220.

137. Acevedo CAJ, y Jorge JPG, Patino IR. Methodology to transform a monolithic software into a microservice architecture. Paper presented
at: Proceedings of the 2017 6th International Conference on Software Process Improvement (CIMPS); 2017:1-6. doi:https://doi.org/10.
1109/CIMPS.2017.8169955.

138. Galbraith K. 3 methods for microservice communication; 2019. https://blog.logrocket.com/methods-for-microservice-communication/.
139. Müssig D, Stricker R, Lässig J, Heider J. Highly scalable microservice-based enterprise architecture for smart ecosystems in hybrid cloud

environments. Paper presented at: Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 3:
ICEIS, INSTICC; 2017:454-459; SciTePress. doi:https://doi.org/10.5220/0006373304540459.

140. Ulander D, Software architectural metrics for the scania internet of things platform: from a microservice perspectiv; 2017.
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1115342.

https://martinfowler.com/eaaDev/EventCollaboration.html
https://martinfowler.com/eaaDev/EventCollaboration.html
https://medium.com/netflix%2010techblog/netflix%2010conductor%2010a%2010microservices%2010orchestrator%20102e8d4771bf40
https://medium.com/netflix%2010techblog/netflix%2010conductor%2010a%2010microservices%2010orchestrator%20102e8d4771bf40
http://techtraits.com/microservice.html
https://doi.org/10.1109/ICCITECHN.2017.8281846
https://www.usenix.org/conference/hotcloud15/workshop-2010program/presentation/rajagopalan
https://www.usenix.org/conference/hotcloud15/workshop-2010program/presentation/rajagopalan
https://doi.org/10.1109/HPCSim.2016.7568389
https://doi.org/10.1109/HPCSim.2016.7568389
https://blog.heroku.com/why_microservices_matter
https://blog.heroku.com/why_microservices_matter
https://doi.org/10.1145/2851553.2858659
https://doi.org/10.1109/BigData.2017.8258201
https://doi.org/10.1109/BigData.2017.8258201
http://urn.fi/URN:NBN:fi:jyu-2010201612215220
http://urn.fi/URN:NBN:fi:jyu-2010201612215220
https://doi.org/10.1109/CIMPS.2017.8169955
https://doi.org/10.1109/CIMPS.2017.8169955
https://blog.logrocket.com/methods-2010for-2010microservice-2010communication/
https://doi.org/10.5220/0006373304540459

1676 HASSAN et al.

141. Cockroft A, Gluecon Monitoring Microservices and Containers: A Challenge. Washington, United States of America: Slideshare; 2015.
http://www.slideshare.net/adriancockcroft/gluecon-monitoring-microservices-and-containers-a-challenge.

142. Kleindienst P, Implementation and Evaluation of a Hybrid Microservice Infrastructure. Stuttgart, Germany: Stuttgart Media University;
2017.

143. Srirama SN, Adhikari M, Paul S. Application deployment using containers with auto-scaling for microservices in cloud
environment. Journal of Network and Computer Applications. 2020;160:102629. http://www.sciencedirect.com/science/article/pii/
S108480452030103X. https://doi.org/10.1016/j.jnca.2020.102629.

144. Kallergis D, Garofalaki Z, Katsikogiannis G, Douligeris C. CAPODAZ: a containerised authorisation and policy-driven architecture using
microservices. Ad Hoc Networks. 2020;104:102153. https://doi.org/10.1016/j.adhoc.2020.102153.

145. Bryant D, Microservices: The Organisational and People Impact. Copenhagen, Denmark: Goto; 2017. https://gotocph.com/2017/sessions/
295.

146. Vlaovic S, Pilani R, Parulekar S, Handa S, Netflix Billing Migration to AWS. California, United States of America: Netflix; 2016. https://
medium.com/netflix-techblog/netflix-billing-migration-to-aws-451fba085a4.

147. Reinhold E, Lessons Learned on Uber’s Journey into Microservices. Toronto, Canada: InfoQ; 2016. https://www.infoq.com/presentations/
uber-darwin.

148. Simons D, Decoupled APIs through Microservices. Toronto, Canada: InfoQ; 2016. https://www.infoq.com/presentations/api-
microservices-tools.

149. Richardson C, A Pattern Language for Microservices; 2014. http://microservices.io/patterns/index.html.
150. Sampaio AR, Kadiyala H, Hu B, et al. Supporting microservice evolution. Paper presented at: Proceedings of the 2017 IEEE International

Conference on Software Maintenance and Evolution (ICSME); 2017:539-543.
151. Linthicum DS. Practical use of microservices in moving workloads to the cloud. IEEE Cloud Comput. 2016 Sept;3(5):6-9. https://doi.org/

10.1109/MCC.2016.114.
152. Berger C, Nguyen B, Benderius O. Containerized development and microservices for self-driving vehicles: experiences best practices.

Paper presented at: Proceedings of the 2017 IEEE International Conference on Software Architecture Workshops (ICSAW); 2017:7-12.
doi:https://doi.org/10.1109/ICSAW.2017.56.

153. Stenberg J, Strategies for Decomposing a System into Microservices. Toronto, Canada: InfoQ; 2018. https://www.infoq.com/news/2018/06/
decomposing-system-microservices.

154. Ma SP, Fan CY, Chuang Y, Liu IH, Lan CW. Graph-based and scenario-driven microservice analysis, retrieval, and testing. Future Generat
Comput Syst. 2019;100:724-735. http://www.sciencedirect.com/science/article/pii/S0167739X19302614, https://doi.org/10.1016/j.future.
2019.05.048.

155. Kousiouris G, Tsarsitalidis S, Psomakelis E, et al. A microservice-based framework for integrating IoT management platforms, seman-
tic and AI services for supply chain management. ICT Express. 2019;5(2):141-145. http://www.sciencedirect.com/science/article/pii/
S2405959519301158.

156. Fowler M, Strangler Application. Illinois, United States of America: ThoughtWorks; 2004. https://www.martinfowler.com/bliki/
StranglerApplication.html.

157. Richardson C, Wolff E, Miles R, Kaiser S, Newman S, Tilkov S. microXchg; 2016. https://www.youtube.com/watch?v=wHuI7C3-Eis&list=
PLx2By31njbhrs8caX08BEusyD_fBDu-XG&feature=player_detailpage.

158. Penchikala S, Susanne Kaiser on Microservices Journey from a Startup Perspective. Toronto, Canada: InfoQ; 2017. https://www.infoq.com/
news/2017/07/kaiser-microservices-journey.

159. Posta C, The Hardest Part of Microservices: Calling Your Services. Arizona, United States of America: Christian Posta; 2017. http://blog.
christianposta.com/microservices/the-hardest-part-of-microservices-calling-your-services/.

160. Posta C, Low-risk Monolith to Microservice Evolution Part II. Arizona, United States of America: Christian Posta; 2017. http://blog.
christianposta.com/microservices/low-risk-monolith-to-microservice-evolution-part-ii/.

161. Shoup R, GOTO 2016 - Pragmatic Microservices - Randy Shoup. Copenhagen, Denmark: GOTO; 2016. https://youtu.be/9vS7TbgirgY.
162. Iffland D, Q&A with Intuit’s Alex Balazs. Toronto, Canada: InfoQ; 2016. https://www.infoq.com/articles/intuit-alex-balazs-node-services.
163. Schäffer E, Mayr A, Fuchs J, Sjarov M, Vorndran J, Franke J. Microservice-based architecture for engineering tools enabling a collabo-

rative multi-user configuration of robot-based automation solutions. Proc CIRP. 2019;86:86-91. http://www.sciencedirect.com/science/
article/pii/S2212827120300172.

164. Elenteny R. Microservice definition and architecture; 2020. https://dzone.com/articles/microservice-definition-and-architecture.
165. Tilkov S. One size does not fit all; 2016. https://gotocon.com/dl/goto-london-2016/slides/Stefan_Tilkov-

OneSizeDoesNotFitAllGOTOLondon16.pdf.
166. Medvidovic N, Taylor RN. A classification and comparison framework for software architecture description languages. IEEE Trans Softw

Eng. 2000;26(1):70-93. https://doi.org/10.1109/32.825767.
167. Cockroft A, State of the Art in Microservices. Toronto, Canada: InfoQ; 2015. https://www.infoq.com/presentations/microservices-

comparison-evolution.
168. Little M, The Difference Between SOA and Microservices?. Toronto, Canada: InfoQ; 2017. https://www.infoq.com/news/2017/07/

soaandmicroservices.
169. Rademacher F, Sachweh S, Zündorf A. Differences between model-driven development of service-oriented and microservice architecture.

Paper presented at: Proceedings of the 2017 IEEE International Conference on Software Architecture Workshops (ICSAW); 2017:38-45.
doi:https://doi.org/10.1109/ICSAW.2017.32.

http://www.slideshare.net/adriancockcroft/gluecon-2010monitoring-2010microservices-2010and-2010containers-2010a-2010challenge
http://www.sciencedirect.com/science/article/pii/S108480452030103X
http://www.sciencedirect.com/science/article/pii/S108480452030103X
https://doi.org/10.1016/j.jnca.2020.102629
https://doi.org/10.1016/j.adhoc.2020.102153
https://gotocph.com/2017/sessions/295
https://gotocph.com/2017/sessions/295
https://medium.com/netflix-2010techblog/netflix-2010billing-2010migration-2010to-2010aws-2010451fba085a4
https://medium.com/netflix-2010techblog/netflix-2010billing-2010migration-2010to-2010aws-2010451fba085a4
https://www.infoq.com/presentations/uber-2010darwin
https://www.infoq.com/presentations/uber-2010darwin
https://www.infoq.com/presentations/api-2010microservices-2010tools
https://www.infoq.com/presentations/api-2010microservices-2010tools
http://microservices.io/patterns/index.html
https://doi.org/10.1109/MCC.2016.114
https://doi.org/10.1109/MCC.2016.114
https://doi.org/10.1109/ICSAW.2017.56
https://www.infoq.com/news/2018/06/decomposing-2010system-2010microservices
https://www.infoq.com/news/2018/06/decomposing-2010system-2010microservices
http://www.sciencedirect.com/science/article/pii/S0167739X19302614
https://doi.org/10.1016/j.future.2019.05.048
https://doi.org/10.1016/j.future.2019.05.048
http://www.sciencedirect.com/science/article/pii/S2405959519301158
http://www.sciencedirect.com/science/article/pii/S2405959519301158
https://www.martinfowler.com/bliki/StranglerApplication.html
https://www.martinfowler.com/bliki/StranglerApplication.html
https://www.infoq.com/news/2017/07/kaiser%2010microservices%2010journey
https://www.infoq.com/news/2017/07/kaiser%2010microservices%2010journey
http://blog.christianposta.com/microservices/the%2010hardest%2010part%2010of%2010microservices%2010calling%2010your%2010services/
http://blog.christianposta.com/microservices/the%2010hardest%2010part%2010of%2010microservices%2010calling%2010your%2010services/
http://blog.christianposta.com/microservices/low%2010risk%2010monolith%2010to%2010microservice%2010evolution%2010part%2010ii/
http://blog.christianposta.com/microservices/low%2010risk%2010monolith%2010to%2010microservice%2010evolution%2010part%2010ii/
https://youtu.be/9vS7TbgirgY
https://www.infoq.com/articles/intuit%2010alex%2010balazs%2010node%2010services
http://www.sciencedirect.com/science/article/pii/S2212827120300172
http://www.sciencedirect.com/science/article/pii/S2212827120300172
https://dzone.com/articles/microservice%2010definition%2010and%2010architecture
https://gotocon.com/dl/goto%2010london%20102016/slides/Stefan_Tilkov%2010OneSizeDoesNotFitAllGOTOLondon16.pdf
https://gotocon.com/dl/goto%2010london%20102016/slides/Stefan_Tilkov%2010OneSizeDoesNotFitAllGOTOLondon16.pdf
https://doi.org/10.1109/32.825767
https://www.infoq.com/presentations/microservices%2010comparison%2010evolution
https://www.infoq.com/presentations/microservices%2010comparison%2010evolution
https://www.infoq.com/news/2017/07/soaandmicroservices
https://www.infoq.com/news/2017/07/soaandmicroservices
https://doi.org/10.1109/ICSAW.2017.32

HASSAN et al. 1677

170. Yu Y, Silveira H, Sundaram M. A microservice based reference architecture model in the context of enterprise architecture. Paper
presented at: Proceedings of the 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control
Conference (IMCEC); 2016:1856-1860. doi:https://doi.org/10.1109/IMCEC.2016.7867539.

171. Ford N, Building microservice architectures; 2018. http://nealford.com/downloads/Building_Microservice_Architectures_Neal_Ford.
pdf.

172. Koutsouras A, Kougioumoutzakis D, Kantzavelou I. Assessment and security issues in cloud computing services. Paper presented at:
Proceedings of the 19th Panhellenic Conference on Informatics; 2015:165-166; New York, NY, ACM. https://doi.org/10.1145/2801948.
2802030

173. Dragoni N, Lanese I, Larsen ST, Mazzara M, Mustafin R, Safina L. Microservices: How To Make Your Application Scale. CoRR.
2017;abs/1702.07149 http://arxiv.org/abs/1702.07149.

174. Salah T, Zemerly MJ, Yeun CY, Al-Qutayri M, Al-Hammadi Y. The evolution of distributed systems towards microservices architecture.
Paper presented at: Proceedings of the 2016 11th International Conference for Internet Technology and Secured Transactions (ICITST);
2016:318-325. doi:https://doi.org/10.1109/ICITST.2016.7856721.

175. N Herzberg O. Kopp J. Lenhard C Hochreiner. Analyzing the relevance of SOA patterns for microservice-based systems. Paper presented
at: Proceedings of the10th ZEUS Workshop, ZEUS 2018; 2018.

176. Bakshi K. Microservices-based software architecture and approaches. Paper presented at: Proceedings of the 2017 IEEE Aerospace
Conference; 2017:1-8. doi:https://doi.org/10.1109/AERO.2017.7943959.

177. Herzberg N, Hochreiner C, Kopp O, Lenhard J. Challenges of microservices architecture: a survey on the state of the practice. Paper
presented at: Proceedings of the 10th ZEUS Workshop, ZEUS 2018; 2018.

178. Joselyne MI, Kanagwa B, Balikuddembe J. A framework to Modernize SME Application in Emerging Economies: Microservice
Architecture Pattern Approach. Microservices. 2017.

179. Almeida WHC, de Aguiar Monteiro L, Hazin RR, de Lima AC, Ferraz FS. Survey on microservice architecture-security, privacy and
standardization on cloud computing environment. Paper presented at: Proceedings of the 12th International Conference on Software
Engineering Advances (ICSEA 2017); 2017:210.

180. Mont O, Introducing and developing a Product-Service System (PSS) concept in Sweden. ARRAY(0x8348a88); 2001.
181. Baines T. Servitization: from understanding to implementation; 2016. https://www.advancedservicesgroup.co.uk/single-post/2016/10/

12/Servitization-From-understanding-to-implementation.
182. Vandermerwe S, Rada J. Servitization of business: adding value by adding services. Eur Manag J. 1988;6(4):314-324. http://www.

sciencedirect.com/science/article/pii/0263237388900333. https://doi.org/10.1016/0263-2373(88)90033-3.
183. Baines TS, Lightfoot HW, Benedettini O, Kay JM. The servitization of manufacturing: a review of literature and reflection on future

challenges. J Manuf Technol Manag. 2009;20(5):547-567. https://doi.org/10.1108/17410380910960984.
184. Baines T. Digitalisation and servitization: the competitive advantage? 2018. https://www.advancedservicesgroup.co.uk/single-post/2018/

04/04/Digitalisation-and-servitization-the-competitive-advantage.
185. ThoughtWorks, Otto | From legacy systems to fast and flexible platforms; 2016. https://youtu.be/bSvjZi3WKZQ.
186. Godwin S. Cloud-based microservices powering BBC iPlayer; 2016. https://www.infoq.com/presentations/bbc-microservices-aws?utm_

campaign=infoq_content&utm_source=infoq&utm_medium=feed&utm_term=Microservices.
187. Newman S. Practical considerations for microservice architectures. Part 1; 2014. https://www.youtube.com/watch?v=12n9E5L6qgs.
188. Bass L, Weber I, Zhu L. DevOps: A Software Architect’s Perspective. London, United Kingdom: Pearson Education; 2015.
189. Stenberg J, Exploring the Hexagonal Architecture. Toronto, Canada: InfoQ; 2014. https://www.infoq.com/news/2014/10/exploring-

hexagonal-architecture.
190. Klock S, Van der Werf JMEM, Guelen JP, Jansen S. Workload-based clustering of coherent feature sets in microservice architectures.

Paper presented at: Proceedings of the 2017 IEEE International Conference on Software Architecture (ICSA); 2017:11-20. doi:https://doi.
org/10.1109/ICSA.2017.38.

191. Cheng BC, de Lemos R, Giese H, et al. Software engineering for self-adaptive systems: a research roadmap. In: Cheng BHC, de Lemos R,
Giese H, Inverardi P, Magee J, eds. Software Engineering for Self-Adaptive Systems. Vol 5525. Berlin, Heidelberg/Germany: Springer;
2009:1-26. https://doi.org/10.1007/978-3-642-02161-9_1.

192. Haselböck S, Weinreich R, Buchgeher G. Decision models for microservices: design areas, stakeholders, use cases, and requirements. In:
Lopes A, de Lemos R, eds. Software Architecture. Cham: Springer International Publishing; 2017:155-170.

193. Perry DE, Porter AA, Votta LG. Empirical studies of software engineering: a roadmap. Paper presented at: Proceedings of theProceedings
of the Conference on The Future of Software Engineering; 2000:345-355; New York, NY, ACM. https://doi.org/10.1145/336512.336586

194. Kitchenham BA, Dyba T, Jorgensen M. Evidence-based software engineering. Paper presented at: Proceedings of the 26th Interna-
tional Conference on Software Engineering; 2004:273-281; Washington, DC, IEEE Computer Society. http://dl.acm.org/citation.cfm?id=
998675.999432.

195. Ponce F, Márquez G, Astudillo H. Migrating from monolithic architecture to microservices: a rapid review. Paper presented at:
Proceedings of the 2019 38th International Conference of the Chilean Computer Science Society (SCCC); 2019:1-7.

196. Werner, C. M. L. A survey on microservices criticality attributes on established architectures. Paper presented at: Proceedings of the 2019
International Conference on Information Systems and Software Technologies (ICI2ST); 2019:149-155.

197. Chávez K, Cedillo P, Espinoza M, Saquicela V. A systematic literature review on composition of microservices through the use of semantic
annotations: solutions and techniques. Paper presented at: Proceedings of the 2019 International Conference on Information Systems
and Computer Science (INCISCOS); 2019:311-318.

https://doi.org/10.1109/IMCEC.2016.7867539
http://nealford.com/downloads/Building_Microservice_Architectures_Neal_Ford.pdf
http://nealford.com/downloads/Building_Microservice_Architectures_Neal_Ford.pdf
https://doi.org/10.1145/2801948.2802030
https://doi.org/10.1145/2801948.2802030
http://arxiv.org/abs/1702.07149
https://doi.org/10.1109/ICITST.2016.7856721
https://doi.org/10.1109/AERO.2017.7943959
https://www.advancedservicesgroup.co.uk/single%2010post/2016/10/12/Servitization%2010From%2010understanding%2010to%2010implementation
https://www.advancedservicesgroup.co.uk/single%2010post/2016/10/12/Servitization%2010From%2010understanding%2010to%2010implementation
http://www.sciencedirect.com/science/article/pii/0263237388900333
http://www.sciencedirect.com/science/article/pii/0263237388900333
https://doi.org/10.1016/0263-2373(88)90033-3
https://doi.org/10.1108/17410380910960984
https://www.advancedservicesgroup.co.uk/single%2010post/2018/04/04/Digitalisation%2010and%2010servitization%2010the%2010competitive%2010advantage
https://www.advancedservicesgroup.co.uk/single%2010post/2018/04/04/Digitalisation%2010and%2010servitization%2010the%2010competitive%2010advantage
https://youtu.be/bSvjZi3WKZQ
https://www.infoq.com/news/2014/10/exploring%2010hexagonal%2010architecture
https://www.infoq.com/news/2014/10/exploring%2010hexagonal%2010architecture
https://doi.org/10.1109/ICSA.2017.38
https://doi.org/10.1109/ICSA.2017.38
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1145/336512.336586
http://dl.acm.org/citation.cfm?id=998675.999432
http://dl.acm.org/citation.cfm?id=998675.999432

1678 HASSAN et al.

198. Garriga M. Towards a taxonomy of microservices architectures. In: Cerone A, Roveri M, eds. Software Engineering and Formal Methods.
Cham: Springer International Publishing; 2018:203-218.

199. Joseph CT, Chandrasekaran K. Straddling the crevasse: A review of microservice software architecture foundations and recent advance-
ments. Software: Practice and Experience. 2019;49(10):1448-1484.

200. Cerny T, Donahoo MJ, Pechanec J. Disambiguation and comparison of SOA, microservices and self-contained systems. Paper presented
at: Proceedings of the International Conference on Research in Adaptive and Convergent Systems; 2017:228-235; New York, NY, ACM.
https://doi.org/10.1145/3129676.3129682.

201. Vural H, Koyuncu M, Guney S. A systematic literature review on microservices. In: Gervasi O, Murgante B, Misra S, et al., eds.
Computational Science and Its Applications – ICCSA 2017. Cham: Springer International Publishing; 2017:203-217.

202. Soldani J, Tamburri DA, Heuvel WJVD. The pains and gains of microservices: A Systematic grey literature review. Journal of Sys-
tems and Software. 2018;146:215-232. http://www.sciencedirect.com/science/article/pii/S0164121218302139. https://doi.org/10.1016/j.
jss.2018.09.082.

203. Dragoni N, Giallorenzo S, Lluch-Lafuente A, et al. Microservices: yesterday, today, and tomorrow. CoRR. 2016;abs/1606.04036 http://
arxiv.org/abs/1606.04036.

204. Balalaie A, Heydarnoori A, Jamshidi P, Tamburri DA, Lynn T. Microservices migration patterns. Softw Pract Exp. 2018;48(11):2019-2042.
https://doi.org/10.1002/spe.2608.

205. Alshuqayran N, Ali N, Evans R. Towards micro service architecture recovery: an empirical study. paper presented at: proceedings of the
IEEE International Conference on Software Architecture; 2018; 2018.

206. Cerny T. Aspect-oriented challenges in system integration with microservices, SOA and IoT. Enterpr Inf Syst. 2018;13:467-489. https://
doi.org/10.1080/17517575.2018.1462406.

207. Li S. Understanding quality attributes in microservice architecture. Paper presented at: Proceedings of the 2017 24th Asia-Pacific Software
Engineering Conference Workshops (APSECW); 2017:9-10. doi:https://doi.org/10.1109/APSECW.2017.33.

208. Carlson L. What are microservices? Lightweight software development explained; 2017. https://www.infoworld.com/article/3237697/
application-development/what-are-microservices-lightweight-software-development-explained.html.

209. Stenberg J, About the SOA Heritage Impact on Microservices. Toronto, Canada: InfoQ; 2017. https://www.infoq.com/news/2017/11/soa-
impact-microservices.

210. Stenberg J, Microservices and Teams at Amazon. Toronto, Canada: InfoQ; 2015. https://www.infoq.com/news/2015/12/microservices-
amazon.

211. Erl T. SOA Principles of Service Design. London, United Kingdom: Pearson Education; 2007 https://books.google.co.uk/books?id=
mkQJvjR2sX0C.

212. Erl T. Service-Oriented Architecture: Concepts, Technology, and Design. London, United Kingdom: Pearson Education; 2005.
https://books.google.co.uk/books?id=y2MALc9HOF8C.

213. MacKenzie CM, Laskey K, McCabe F, Brown PF, Metz R, Hamilton BA. Reference model for service oriented architecture 1.0. OASIS
Stand. 2006;12:18.

214. Rosen M, Lublinsky B, Smith KT, Balcer MJ. Applied SOA: Service-Oriented Architecture and Design Strategies. New Jersey, United States
of America: Wiley; 2012 https://books.google.co.uk/books?id=GFL9lWKojFYC.

215. Perrey R, Lycett M. Service-oriented architecture. Paper presented at: Proceedings of the 2003 Symposium on Applications and the
Internet Workshops; vol 2003; 2003:116-119. doi:https://doi.org/10.1109/SAINTW.2003.1210138.

216. Zimmermann O, Doubrovski V, Grundler J, Hogg K. Service-oriented architecture and business process choreography in an order man-
agement scenario: rationale, concepts, lessons learned. Paper presented at: Proceedings of the Companion to the 20th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications; 2005:301-312; New York, NY ACM.
https://doi.org/10.1145/1094855.1094965.

217. Papazoglou MP. Service-oriented computing: concepts, characteristics and directions. Paper presented at: Proceedings of the 4th
International Conference on Web Information Systems Engineering WISE 2003; 2003:3-12. doi:https://doi.org/10.1109/WISE.2003.
1254461.

218. Papazoglou M, Traverso P, Dustdar S, Leymann F, Krämer BJ. Service-oriented computing research roadmap; 2006.
219. Papazoglou MP, Georgakopoulos D. Introduction: service-oriented computing. Commun ACM. 2003;46(10):24-28. https://doi.org/10.

1145/944217.944233.
220. Channabasavaiah K, Holley K, Tuggle E. Migrating to a service-oriented architecture. IBM DevelopWorks. 2003;16:727-728.
221. Bianco P, Kotermanski R, Merson PF. Evaluating a Service-Oriented Architecture. Pennsylvania, United States of America: Carnegie

Mellon University; 2007.
222. Krafzig D, Banke K, Slama D. Enterprise SOA: service-oriented architecture best practices. prentice hall professional technical reference;

2005. https://books.google.co.uk/books?id=R7oGhITYUuUC.
223. Richards M. Microservices vs. Service-Oriented Architecture. California, United States of America: O Reilly Media; 2016.
224. Babar MA, Dingsøyr T, Lago P, vander Vilet H. Software Architecture Knowledge Management - Theory and Practice. 1st ed. Berlin,

Heidelberg/Germany: Springer-Verlag; 2009.
225. Newman S. Building Microservices. 1st ed. California, United States of America: O’Reilly Media; 2015.
226. Zachman JA. The Zachman Framework For Enterprise Architecture: Primer for Enterprise Engineering and Manufacturing. Colorado,

United States of America: Zachman International; 2003.

https://doi.org/10.1145/3129676.3129682
http://www.sciencedirect.com/science/article/pii/S0164121218302139
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
http://arxiv.org/abs/1606.04036
http://arxiv.org/abs/1606.04036
https://doi.org/10.1002/spe.2608
https://doi.org/10.1080/17517575.2018.1462406
https://doi.org/10.1080/17517575.2018.1462406
https://doi.org/10.1109/APSECW.2017.33
https://www.infoworld.com/article/3237697/application%2010development/what%2010are%2010microservices%2010lightweight%2010software%2010development%2010explained.html
https://www.infoworld.com/article/3237697/application%2010development/what%2010are%2010microservices%2010lightweight%2010software%2010development%2010explained.html
https://www.infoq.com/news/2017/11/soa%2010impact%2010microservices
https://www.infoq.com/news/2017/11/soa%2010impact%2010microservices
https://www.infoq.com/news/2015/12/microservices%2010amazon
https://www.infoq.com/news/2015/12/microservices%2010amazon
https://books.google.co.uk/books?id=mkQJvjR2sX0C
https://books.google.co.uk/books?id=mkQJvjR2sX0C
https://books.google.co.uk/books?id=GFL9lWKojFYC
https://doi.org/10.1109/SAINTW.2003.1210138
https://doi.org/10.1145/1094855.1094965
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1145/944217.944233
https://doi.org/10.1145/944217.944233

HASSAN et al. 1679

227. White J, Strowd HD, Schmidt DC. Creating self-healing service compositions with feature modeling and microrebooting. Int J Bus Process
Integr Manag (IJBPIM) Special Iss Model-Driven Serv-Orient Architec. 2009;4:35–46.

228. Vogel T, Giese H. Model-driven engineering of self-adaptive software with EUREMA. ACM Trans Auton Adapt Syst. 2014;8(4):18:1-18:33.
https://doi.org/10.1145/2555612.

229. Danilovic M, Browning TR. Managing complex product development projects with design structure matrices and domain mapping matri-
ces. Int J Project Manag. 2007;25(3):300-314. http://www.sciencedirect.com/science/article/pii/S0263786306001645. https://doi.org/10.
1016/jijproman.2006.11.003.

230. Mo R, Cai Y, Kazman R, Xiao L, Feng Q. Decoupling level: a new metric for architectural maintenance complexity. Paper presented at:
Proceedings of the 38th International Conference on Software Engineering; 2016:499-510.

231. Sheppard M. Design metrics: an empirical analysis. Softw Eng J. 1990;5(1):3-10.
232. Rombach HD. A controlled expeniment on the impact of software structure on maintainability. IEEE Trans Softw Eng.

1987;SE-13(3):344-354. https://doi.org/10.1109/TSE.1987.233165.
233. Briand LC, Morasca S, Basili VR. Measuring and assessing maintainability at the end of high level design. Paper presented at: Proceedings

of the Conference on Software Maintenance; 1993:88-97; Washington, DC, IEEE Computer Society. http://dl.acm.org/citation.cfm?id=
645542.658018.

234. Ozkaya I, Kazman R, Klein M. Quality-Attribute-Based Economic Valuation of Architectural Patterns. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University; 2007.

235. Sullivan KJ, Chalasani P, Jha S, Sazawal V. Software design as an investment activity: a real options perspective. Real Options and Business
Strategy: Applications to Decision Making. Vol 10; 1999:215-262.

236. Sullivan KJ, Griswold WG, Cai Y, Hallen B. The structure and value of modularity in software design. Paper presented at: Proceedings of
the 8th European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering; 2001:99-108; New York, NY, ACM. https://doi.org/10.1145/503209.503224.

237. Asundi J, Kazman R, Klein M. Using Economic Considerations to Choose Among Architecture Design Alternatives. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University; 2001.

238. Riegg CS, Edwin KJ. Cost-Effectiveness and Cost-Benefit Analysis. New York, United States of America: JohnWileySons; 2015:636-672.
239. Scaffidi, C., Arora, A., Butler, S., & Shaw, M. A value-based approach to predicting system properties from design. Paper presented at:

Proceedings of the 5th EDSER; 2005.
240. Dobrica L, Niemela E. A survey on software architecture analysis methods. IEEE Trans Softw Eng. 2002;28(7):638-653. https://doi.org/

10.1109/TSE.2002.1019479.
241. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented Software. London, United Kingdom:

Pearson Education; 1994 https://books.google.co.uk/books?id=6oHuKQe3TjQC.
242. Cardoso J, Sheth A, Miller J, Arnold J, Kochut K. Quality of service for workflows and web service processes. J Web

Semant. 2004;1(3):281-308: http://www.sciencedirect.com/science/article/pii/S157082680400006X. https://doi.org/10.1016/j.websem.
2004.03.001.

243. Casati F, Ilnicki S, Jin L, Krishnamoorthy V, Shan MC. Adaptive and dynamic service composition in eFlow. Paper presented at: Proceed-
ings of the 12th International Conference on Advanced Information Systems Engineering; 2000:13-31; London, UK, Springer-Verlag.

244. Sama M, Elbaum S, Raimondi F, Rosenblum DS, Wang Z. Context-Aware Adaptive Applications: Fault Patterns and Their Automated
Identification. Piscataway, NJ: IEEE Press; 2010.

245. Mustafa O, Gomez JM. Using fuzzy clustering techniques to improve the design of microservices web applications. Paper presented at:
Proceedings of the 2016 Eureka International Virtual Meeting Eureka OPTISAD; 2016.

246. Mustafa O, Gómez JM. Sustainable approach for improving microservices based web application. Paper presented at: Proceedings of the
Sustainability Dialogue: International Conference on Sustainability and Environmental Management; 2017.

247. Kessler FB, ASTRO-CAptEvo; 2014. http://das.fbk.eu/astro-captevo.
248. Benatallah B, Dumas M, Sheng QZ, Ngu AHH. Declarative composition and peer-to-peer provisioning of dynamic Web services. Paper

presented at: Proceedings of the Data Engineering, 2002 18th International Conference; 2002:297-308. doi:https://doi.org/10.1109/ICDE.
2002.994738.

249. Maximilien EM, Singh MP. Toward autonomic web services trust and selection. Paper presented at: Proceedings of the 2nd International
Conference on Service Oriented Computing; 2004:212-221. https://doi.org/10.1145/1035167.1035198.

250. Wang P, Chao KM, Lo CC, Farmer R, Kuo PT. A reputation-based service selection scheme. Paper presented at: Proceedings of the
e-Business Engineering, 2009. ICEBE ’09. IEEE International Conference; 2009:501-506.

251. Limthanmaphon B, Zhang Y. Web service composition with case-based reasoning. Paper presented at: Proceedings of the 14th Aus-
tralasian Database Conference - Volume 17 Darlinghurst; 2003:201-208; Australia, Australia, Australian Computer Society, Inc. http://
dl.acm.org/citation.cfm?id=820085.820122.

252. Filieri A, Ghezzi C, Tamburrelli G. A formal approach to adaptive software: continuous assurance of non-functional requirements. Formal
Aspects of Computing. 2011;24(2):163-186. https://doi.org/10.1007/s00165-011-0207-2.

253. Calinescu R, Rafiq Y, Johnson K, Bakir ME. Adaptive model learning for continual verification of non-functional properties. Paper
presented at: Proceedings of theProceedings of the 5th ACM/SPEC International Conference on Performance Engineering; 2014:87-98.

254. Calinescu R, Ghezzi C, Kwiatkowska M, Mirandola R. Self-adaptive software needs quantitative verification at runtime. Commun ACM.
2012;55(9):69-77. https://doi.org/10.1145/2330667.2330686.

https://doi.org/10.1145/2555612
http://www.sciencedirect.com/science/article/pii/S0263786306001645
https://doi.org/10.1016/jijproman.2006.11.003
https://doi.org/10.1016/jijproman.2006.11.003
https://doi.org/10.1109/TSE.1987.233165
http://dl.acm.org/citation.cfm?id=645542.658018
http://dl.acm.org/citation.cfm?id=645542.658018
https://doi.org/10.1145/503209.503224
https://doi.org/10.1109/TSE.2002.1019479
https://doi.org/10.1109/TSE.2002.1019479
https://books.google.co.uk/books?id=6oHuKQe3TjQC
http://www.sciencedirect.com/science/article/pii/S157082680400006X
https://doi.org/10.1016/j.websem.2004.03.001
https://doi.org/10.1016/j.websem.2004.03.001
http://das.fbk.eu/astro%2010captevo
https://doi.org/10.1109/ICDE.2002.994738
https://doi.org/10.1109/ICDE.2002.994738
https://doi.org/10.1145/1035167.1035198
http://dl.acm.org/citation.cfm?id=820085.820122
http://dl.acm.org/citation.cfm?id=820085.820122
https://doi.org/10.1007/s00165-011-0207-2
https://doi.org/10.1145/2330667.2330686

1680 HASSAN et al.

255. Bencomo N, Belaggoun A, Issarny V. Dynamic decision networks for decision-making in self-adaptive systems: a case study. Paper
presented at: Proceedings of the 8th International Symposium on Software Engineering for Adaptive and Self-Managing Systems;
2013:113-122; Piscataway, NJ, IEEE Press. http://dl.acm.org/citation.cfm?id=2663546.2663565.

256. Blair G, Bencomo N, France RB. Models@ run.time. Computer. 2009;42(10):22-27. https://doi.org/10.1109/MC.2009.326.
257. Zhang J, Cheng BHC. Model-based development of dynamically adaptive software. Paper presented at: Proceedings of the 28th

International Conference on Software Engineering; 2006:371-380; New York, NY, ACM. https://doi.org/10.1145/1134285.1134337
258. Aßmann U, Götz S, Jézéquel JM, Morin B, Trapp M. Models@ run. time. Cham: Springer International Publishing; 2014:1-18.
259. Oreizy P. On the role of software architectures in runtime system reconfiguration. Paper presented at: Proceedings of the IEE

Proceedings – Software; vol 145 October 1998137-145. http://digital-library.theiet.org/content/journals/10.1049/ip-sen_19982296.
260. Barbier F. MDE-based design and implementation of autonomic software components. Paper presented at: Proceedings of the 2006 5th

IEEE International Conference on Cognitive Informatics; vol. 1; 2006:163-169. doi:https://doi.org/10.1109/COGINF.2006.365692.
261. Joshi KR, Hiltunen MA, Sanders WH, Schlichting RD. Automatic model-driven recovery in distributed systems. Paper presented at:

Proceedings of the24th IEEE Symposium on Reliable Distributed Systems (SRDS’05); 2005:25-36. doi:https://doi.org/10.1109/RELDIS.
2005.11.

262. Fleurey F, Dehlen V, Bencomo N, Morin B, Jézéquel JM. Models in Software Engineering. Berlin, Heidelberg/Germany: Springer-Verlag;
2009:97-108.

263. Morin B, Barais O, Nain G, Jezequel JM. Taming dynamically adaptive systems using models and aspects. Paper presented at: Proceedings
of the 2009 IEEE 31st International Conference on Software Engineering; 2009:122-132.

264. Floch J, Hallsteinsen S, Stav E, Eliassen F, Lund K, Gjorven E. Using architecture models for runtime adaptability. IEEE Softw.
2006;23(2):62-70.

265. Mongiello M, Colucci S, Vogli E, Grieco LA, Sciancalepore M. Run-time architectural modeling for future internet applications. Complex
Intell Syst. 2016;2(2):111-124. https://doi.org/10.1007/s40747-016-0020-x.

266. Heinrich R, Zirkelbach C, Jung R. Architectural runtime modeling and visualization for quality-aware DevOps in cloud applications.
Paper presented at: Proceedings of the 2017 IEEE International Conference on Software Architecture Workshops (ICSAW); 2017:199-201.
doi:https://doi.org/10.1109/ICSAW.2017.33

267. van Engelen R. Code Generation Techniques for Developing Light-weight XML Web Services for Embedded Devices. Paper presented
at: Proceedings of the 2004 ACM Symposium on Applied Computing; 2004:854-861; New York, NY, ACM. doi:https://doi.org/10.1145/
967900.968075.

268. Kwon YW, Tilevich E. Cloud refactoring: automated transitioning to cloud-based services. Automated Software Engineering.
2013;21(3):345-372. https://doi.org/10.1007/s10515-013-0136-9.

269. Bencomo N, Belaggoun A. Supporting decision-making for self-adaptive systems: from goal models to dynamic decision networks. In:
Doerr J, Opdahl A, eds. Requirements Engineering: Foundation for Software Quality. Vol 7830. Berlin Heidelberg/Germany: Springer;
2013:221-236. https://doi.org/10.1007/978-3-642-37422-7_16.

270. Cheng SW, Garlan D, Schmerl B. Self-star properties in complex information systems. In: Babaoglu O, Jelasity M, Montresor A, Fetzer C,
Leonardi S, eds. Making Self-adaptation an Engineering Reality. Berlin, Heidelberg: Springer-Verlag; 2005:158-173 http://dl.acm.org/
citation.cfm?id=2167575.2167589.

271. Garlan D, Cheng SW, Huang AC, Schmerl B, Steenkiste P. Rainbow: architecture-based self-adaptation with reusable infrastructure.
Computer. 2004;37(10):46-54. https://doi.org/10.1109/MC.2004.175.

272. IBM. An Architectural Blueprint for Autonomic Computing. Indiana, United States of America: IBM; 2006.
273. de Lemos R, Giese H, Müller H, et al. Software engineering for self-adaptive systems: a second research roadmap. In: de Lemos R, Giese H,

Muller H, Shaw M, eds. Software Engineering for Self-Adaptive Systems II. Vol 7475. Berlin Heidelberg: Springer; 2013:1-32. https://doi.
org/10.1007/978-3-642-35813-5_1.

274. Dobson S, Denazis S, Fernández A, et al. A Survey of Autonomic Communications. ACM Trans Auton Adapt Syst. 2006;1(2):223-259.
https://doi.org/10.1145/1186778.1186782.

275. Burns R. Advanced Control Engineering. Oxford, United Kingdom: Butterworth-Heinemann; 2001 https://books.google.co.uk/books?id=
DovwVQu6ImsC.

276. Cámara J, Garlan D, Kang WG, Peng W, Schmerl B. Uncertainty in Self-Adaptive Systems Categories, Management, and Perspectives.
Pennsylvania, United States of America: Carnegie Mellon University; 2017.

277. Georgiadis I, Magee J, Kramer J. Self-organising software architectures for distributed systems. Paper presented at: Proceedings of the
1st Workshop on Self-healing Systems; 2002:33-38; New York, NY, ACM. doi:https://doi.org/10.1145/582128.582135.

278. Malek S, Mikic-Rakic M, Medvidovic N. A decentralized redeployment algorithm for improving the availability of distributed systems.
In: Dearle A, Eisenbach S, eds. Component Deployment. Vol 3798. Berlin, Heidelberg/Germany: Springer; 2005:99-114. https://doi.org/
10.1007/11590712_8.

279. Vromant P, Weyns D, Malek S, Andersson J. On interacting control loops in self-adaptive systems. Paper presented at: Proceedings of the
6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems; 2011:202-207. https://doi.org/10.1145/
19880081988037

280. Weyns D, Malek S, Andersson J. On decentralized self-adaptation: lessons from the trenches and challenges for the future. Paper pre-
sented at: Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems; 2010:84-93; New
York, NY, ACM. doi:https://doi.org/10.1145/18089841808994.

http://dl.acm.org/citation.cfm?id=2663546.2663565
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1145/1134285.1134337
http://digital%2010library.theiet.org/content/journals/10.1049/ip%2010sen_19982296
https://doi.org/10.1109/COGINF.2006.365692
https://doi.org/10.1109/RELDIS.2005.11
https://doi.org/10.1109/RELDIS.2005.11
https://doi.org/10.1007/s40747-016-0020-x
https://doi.org/10.1109/ICSAW.2017.33
https://doi.org/10.1145/967900.968075
https://doi.org/10.1145/967900.968075
https://doi.org/10.1007/s10515-013-0136-9
https://doi.org/10.1007/978-3-642-37422-7_16
http://dl.acm.org/citation.cfm?id=2167575.2167589
http://dl.acm.org/citation.cfm?id=2167575.2167589
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1145/1186778.1186782
https://books.google.co.uk/books?id=DovwVQu6ImsC
https://books.google.co.uk/books?id=DovwVQu6ImsC
https://doi.org/10.1145/582128.582135
https://doi.org/10.1007/11590712_8
https://doi.org/10.1007/11590712_8
https://doi.org/10.1145/19880081988037
https://doi.org/10.1145/19880081988037
https://doi.org/10.1145/18089841808994

HASSAN et al. 1681

281. Dietrich J, McCartin C, Tempero E, Shah SA. Barriers to modularity - an empirical study to assess the potential for modularisation of
java programs. In: Heineman G, Kofron J, Plasil F, eds. Research into Practice - Reality and Gaps. Vol 6093. Berlin, Heidelberg/Germany:
Springer; 2010:135-150. https://doi.org/10.1007/978-3-642-13821-8_11.

282. Zimmermann O. Architectural refactoring for the cloud: a decision-centric view on cloud migration. Computing. 2017;99(2):129-145.
https://doi.org/10.1007/s00607-016-0520-y.

283. Losavio F, Ordaz O, Esteller V. Refactoring-based design of reference architecture. Revista Antioqueña de las Ciencias Computacionales.
2015;5(1).32–48.

284. Stal M. Chapter 3 - refactoring software architectures. In: Babar MA, Brown AW, Mistrik I, eds. Agile Software Architecture. Boston,
MA: Morgan Kaufmann; 2014:63-82. https://www.sciencedirect.com/science/article/pii/B9780124077720000034. https://doi.org/10.
1016/B978-0-12-407772-000003-4.

285. Schmidt F, MacDonell SG, Connor AM. In: Lee R, ed. An Automatic Architecture Reconstruction and Refactoring Framework. Berlin,
Heidelberg/Germany: Springer; 2012:95-111. https://doi.org/10.1007/978-3-642-23202-2_7.

286. Jamshidi P, Pahl C, Chinenyeze S, Liu X. Cloud Migration Patterns: A Multi-cloud Service Architecture Perspective. In: Toumani F,
Pernici B, Grigori D, et al., eds. Service-Oriented Computing - ICSOC 2014 Workshops. Cham: Springer International Publishing; 2015:6-19.

287. Zimmermann O. Architectural decision identification in architectural patterns. Paper presented at: Proceedings of the WICSA/ECSA
2012 Companion; 2012:96-103; New York, NY, ACM. doi:https://doi.org/10.1145/23619992362021.

288. Oreizy P, Medvidovic N, Taylor RN. Architecture-based runtime software evolution. Paper presented at: Proceedings of the 20th Inter-
national Conference on Software Engineering; 1998:177-186; Washington, DC, IEEE Computer Society. http://dl.acm.org/citation.cfm?
id=302163.302181.

289. Ivkovic I, Kontogiannis K. A framework for software architecture refactoring using model transformations and semantic annotations.
Paper presented at: Proceedings of the Conference on Software Maintenance and Reengineering (CSMR’06); 2006:10. doi:https://doi.
org/10.1109/CSMR.2006.3.

290. McIlraith S, Son T. Adapting golog for composition of semantic web services. Paper presented at: Proceedings of the Eighth International
Conference on Knowledge Representation and Reasoning (KR2002); 2002:482-493; Toulouse, France.

How to cite this article: Hassan S, Bahsoon R, Kazman R. Microservice transition and its granularity problem:
A systematic mapping study. Softw Pract Exper. 2020;50:1651–1681. https://doi.org/10.1002/spe.2869

https://doi.org/10.1007/978-3-642-13821-8_11
https://doi.org/10.1007/s00607-016-0520-y
https://www.sciencedirect.com/science/article/pii/B9780124077720000034
https://doi.org/10.1016/B978-0-12-407772-000003-4
https://doi.org/10.1016/B978-0-12-407772-000003-4
https://doi.org/10.1007/978-3-642-23202-2_7
https://doi.org/10.1145/23619992362021
http://dl.acm.org/citation.cfm?id=302163.302181
http://dl.acm.org/citation.cfm?id=302163.302181
https://doi.org/10.1109/CSMR.2006.3
https://doi.org/10.1109/CSMR.2006.3

