442 research outputs found
3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability and habitability
The inner edge of the classical habitable zone is often defined by the
critical flux needed to trigger the runaway greenhouse instability. This 1D
notion of a critical flux, however, may not be so relevant for inhomogeneously
irradiated planets, or when the water content is limited (land planets).
  Here, based on results from our 3D global climate model, we find that the
circulation pattern can shift from super-rotation to stellar/anti stellar
circulation when the equatorial Rossby deformation radius significantly exceeds
the planetary radius. Using analytical and numerical arguments, we also
demonstrate the presence of systematic biases between mean surface temperatures
or temperature profiles predicted from either 1D or 3D simulations.
  Including a complete modeling of the water cycle, we further demonstrate that
for land planets closer than the inner edge of the classical habitable zone,
two stable climate regimes can exist. One is the classical runaway state, and
the other is a collapsed state where water is captured in permanent cold traps.
We identify this "moist" bistability as the result of a competition between the
greenhouse effect of water vapor and its condensation. We also present
synthetic spectra showing the observable signature of these two states.
  Taking the example of two prototype planets in this regime, namely Gl581c and
HD85512b, we argue that they could accumulate a significant amount of water ice
at their surface. If such a thick ice cap is present, gravity driven ice flows
and geothermal flux should come into play to produce long-lived liquid water at
the edge and/or bottom of the ice cap. Consequently, the habitability of
planets at smaller orbital distance than the inner edge of the classical
habitable zone cannot be ruled out. Transiting planets in this regime represent
promising targets for upcoming observatories like EChO and JWST.Comment: Accepted for publication in Astronomy and Astrophysics, complete
  abstract in the pdf, 18 pages, 18 figure
Increased insolation threshold for runaway greenhouse processes on Earth like planets
Because the solar luminosity increases over geological timescales, Earth
climate is expected to warm, increasing water evaporation which, in turn,
enhances the atmospheric greenhouse effect. Above a certain critical
insolation, this destabilizing greenhouse feedback can "runaway" until all the
oceans are evaporated. Through increases in stratospheric humidity, warming may
also cause oceans to escape to space before the runaway greenhouse occurs. The
critical insolation thresholds for these processes, however, remain uncertain
because they have so far been evaluated with unidimensional models that cannot
account for the dynamical and cloud feedback effects that are key stabilizing
features of Earth's climate. Here we use a 3D global climate model to show that
the threshold for the runaway greenhouse is about 375 W/m, significantly
higher than previously thought. Our model is specifically developed to quantify
the climate response of Earth-like planets to increased insolation in hot and
extremely moist atmospheres. In contrast with previous studies, we find that
clouds have a destabilizing feedback on the long term warming. However,
subsident, unsaturated regions created by the Hadley circulation have a
stabilizing effect that is strong enough to defer the runaway greenhouse limit
to higher insolation than inferred from 1D models. Furthermore, because of
wavelength-dependent radiative effects, the stratosphere remains cold and dry
enough to hamper atmospheric water escape, even at large fluxes. This has
strong implications for Venus early water history and extends the size of the
habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013.
  Accepted version before journal editing and with Supplementary Informatio
Methane storms as a driver of Titan's dune orientation
Titan's equatorial regions are covered by eastward propagating linear dunes.
This direction is opposite to mean surface winds simulated by Global Climate
Models (GCMs), which are oriented westward at these latitudes, similar to trade
winds on Earth. Different hypotheses have been proposed to address this
apparent contradiction, involving Saturn's gravitational tides, large scale
topography or wind statistics, but none of them can explain a global eastward
dune propagation in the equatorial band. Here we analyse the impact of
equinoctial tropical methane storms developing in the superrotating atmosphere
(i.e. the eastward winds at high altitude) on Titan's dune orientation. Using
mesoscale simulations of convective methane clouds with a GCM wind profile
featuring superrotation, we show that Titan's storms should produce fast
eastward gust fronts above the surface. Such gusts dominate the aeolian
transport, allowing dunes to extend eastward. This analysis therefore suggests
a coupling between superrotation, tropical methane storms and dune formation on
Titan. Furthermore, together with GCM predictions and analogies to some
terrestrial dune fields, this work provides a general framework explaining
several major features of Titan's dunes: linear shape, eastward propagation and
poleward divergence, and implies an equatorial origin of Titan's dune sand.Comment: Published online on Nature Geoscience on 13 April 201
The impact of supportive nursing care on the needs of men with prostate cancer: a study across seven European countries
Background: prostate cancer is for many men a chronic disease with a long life expectancy after treatment. The impact of prostate cancer therapy on men has been well defined, however, explanation of the consequences of cancer treatment has not been modelled against the wider variables of long-term health-care provision. The aim of this study was to explore the parameters of unmet supportive care needs in men with prostate cancer in relation to the experience of nursing care. Methods: a survey was conducted among a volunteer sample of 1001 men with prostate cancer living in seven European countries. Results: at the time of the survey, 81% of the men had some unmet supportive care needs including psychological, sexual and health system and information needs. Logistic regression indicated that lack of post-treatment nursing care significantly predicted unmet need. Critically, men's contact with nurses and/or receipt of advice and support from nurses, for several different aspects of nursing care significantly had an impact on men's outcomes. Conclusion: Unmet need is related not only to disease and treatment factors but is also associated with the supportive care men received. Imperative to improving men's treatment outcomes is to also consider the access to nursing and the components of supportive care provided, especially after therapy
Simulated performance of the molecular mapping for young giant exoplanets with the Medium Resolution Spectrometer of JWST/MIRI
Young giant planets are the best targets for characterization with direct
imaging. The Medium Resolution Spectrometer (MRS) of the Mid-Infrared
Instrument (MIRI) of the recently launched James Webb Space Telescope (JWST)
will give access to the first spectroscopic data for direct imaging above 5
m with unprecedented sensitivity at a spectral resolution up to 3700. This
will provide a valuable complement to near-infrared data from ground-based
instruments for characterizing these objects. We aim to evaluate the
performance of MIRI/MRS to detect molecules in the atmosphere of exoplanets and
to constrain atmospheric parameters using Exo-REM atmospheric models. The
molecular mapping technique, based on cross-correlation with synthetic models,
has been introduced recently. This promising detection and characterization
method is tested on simulated MIRI/MRS data. Directly imaged planets can be
detected with MIRI/MRS, and we are able to detect molecules (HO, CO,
NH, CH, HCN, PH, CO) at various angular separation depending on
the strength of the molecular features and brightness of the target. We find
that the stellar spectral type has a weak impact on the detection level. This
method is globally most efficient for planets with temperatures below 1500 K,
for bright targets and angular separation greater than 1. Our parametric
study allows us to anticipate the ability to characterize planets that would be
detected in the future. The MIRI/MRS will give access to molecular species not
yet detected in exoplanetary atmospheres. The detection of molecules as
indicators of the temperature of the planets will make it possible to
discriminate between the various hypotheses of the preceding studies, and the
derived molecular abundance ratios should bring new constraints on planetary
formation scenarios.Comment: 25 pages, 13 figure
In-depth study of moderately young but extremely red, very dusty substellar companion HD206893B
Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The substellar companion HD206893b has recently been discovered by direct imaging of its disc-bearing host star with the SPHERE instrument. We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multiinstrument follow-up of its host star. We obtain a R=30 spectrum from 0.95 to 1.64 micron of the companion and additional photometry at 2.11 and 2.25 micron. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6MJup (2MJup) at 0.5" for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. Though our best fit corresponds to a brown dwarf of 15-30 MJup aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12MJup planetary-mass object to a 50 MJup Hyades-age brown dwarf...Peer reviewedFinal Accepted Versio
Precious metal core-shell spindles
A simplified method to produce spindle-shaped particles with a hematite core and a silica shell is described. The silica shell can, in turn, serve as the substrate for an outer coating of Ag or Au nanoparticles. The resulting multilayer core-shell particles display a flexible optical extinction spectrum, due primarily to the sensitivity of their plasmon resonance to the morphology of the precious metal outer coating. © 2007 American Chemical Society
First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e
To date, infrared interferometry at best achieved contrast ratios of a few
times  on bright targets. GRAVITY, with its dual-field mode, is now
capable of high contrast observations, enabling the direct observation of
exoplanets. We demonstrate the technique on HR8799, a young planetary system
composed of four known giant exoplanets. We used the GRAVITY fringe tracker to
lock the fringes on the central star, and integrated off-axis on the HR8799e
planet situated at 390 mas from the star. Data reduction included
post-processing to remove the flux leaking from the central star and to extract
the coherent flux of the planet. The inferred K band spectrum of the planet has
a spectral resolution of 500. We also derive the astrometric position of the
planet relative to the star with a precision on the order of 100as. The
GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital
solutions. A small adjustment of a few degrees to the orbital inclination of HR
8799 e can resolve the tension, implying that the orbits are close to, but not
strictly coplanar. The spectrum, with a signal-to-noise ratio of 
per spectral channel, is compatible with a late-type L brown dwarf. Using
Exo-REM synthetic spectra, we derive a temperature of \,K and a
surface gravity of cm/s. This corresponds to a radius
of  and a mass of , which is an independent confirmation of mass estimates from evolutionary
models. Our results demonstrate the power of interferometry for the direct
detection and spectroscopic study of exoplanets at close angular separations
from their stars.Comment: published in A&
Exoplanet Diversity in the Era of Space-based Direct Imaging Missions
This whitepaper discusses the diversity of exoplanets that could be detected
by future observations, so that comparative exoplanetology can be performed in
the upcoming era of large space-based flagship missions. The primary focus will
be on characterizing Earth-like worlds around Sun-like stars. However, we will
also be able to characterize companion planets in the system simultaneously.
This will not only provide a contextual picture with regards to our Solar
system, but also presents a unique opportunity to observe size dependent
planetary atmospheres at different orbital distances. We propose a preliminary
scheme based on chemical behavior of gases and condensates in a planet's
atmosphere that classifies them with respect to planetary radius and incident
stellar flux.Comment: A white paper submitted to the National Academy of Sciences Exoplanet
  Science Strateg
- …
