86 research outputs found

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    Get PDF
    Publisher Copyright: © 2021 The Authors, some rights reserved.Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-alpha and/or IFN-omega are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-alpha and/or IFN-omega (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-beta. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-alpha and/or IFN-omega are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-beta do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.Peer reviewe

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    Get PDF
    SignificanceThere is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ÎČ are found in ∌20% of deceased patients across age groups, and in ∌1% of individuals aged 4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≄70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≄80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute; The Rockefeller University; the St. Giles Foundation; the NIH (Grants R01AI088364 and R01AI163029); the National Center for Advancing Translational Sciences; NIH Clinical and Translational Science Awards program (Grant UL1 TR001866); a Fast Grant from Emergent Ventures; Mercatus Center at George Mason University; the Yale Center for Mendelian Genomics and the Genome Sequencing Program Coordinating Center funded by the National Human Genome Research Institute (Grants UM1HG006504 and U24HG008956); the Yale High Performance Computing Center (Grant S10OD018521); the Fisher Center for Alzheimer’s Research Foundation; the Meyer Foundation; the JPB Foundation; the French National Research Agency (ANR) under the “Investments for the Future” program (Grant ANR-10-IAHU-01); the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (Grant ANR-10-LABX-62-IBEID); the French Foundation for Medical Research (FRM) (Grant EQU201903007798); the French Agency for Research on AIDS and Viral hepatitis (ANRS) Nord-Sud (Grant ANRS-COV05); the ANR GENVIR (Grant ANR-20-CE93-003), AABIFNCOV (Grant ANR-20-CO11-0001), CNSVIRGEN (Grant ANR-19-CE15-0009-01), and GenMIS-C (Grant ANR-21-COVR-0039) projects; the Square Foundation; Grandir–Fonds de solidaritĂ© pour l’Enfance; the Fondation du Souffle; the SCOR Corporate Foundation for Science; The French Ministry of Higher Education, Research, and Innovation (Grant MESRI-COVID-19); Institut National de la SantĂ© et de la Recherche MĂ©dicale (INSERM), REACTing-INSERM; and the University Paris CitĂ©. P. Bastard was supported by the FRM (Award EA20170638020). P. Bastard., J.R., and T.L.V. were supported by the MD-PhD program of the Imagine Institute (with the support of Fondation Bettencourt Schueller). Work at the Neurometabolic Disease lab received funding from Centre for Biomedical Research on Rare Diseases (CIBERER) (Grant ACCI20-767) and the European Union's Horizon 2020 research and innovation program under grant agreement 824110 (EASI Genomics). Work in the Laboratory of Virology and Infectious Disease was supported by the NIH (Grants P01AI138398-S1, 2U19AI111825, and R01AI091707-10S1), a George Mason University Fast Grant, and the G. Harold and Leila Y. Mathers Charitable Foundation. The Infanta Leonor University Hospital supported the research of the Department of Internal Medicine and Allergology. The French COVID Cohort study group was sponsored by INSERM and supported by the REACTing consortium and by a grant from the French Ministry of Health (Grant PHRC 20-0424). The Cov-Contact Cohort was supported by the REACTing consortium, the French Ministry of Health, and the European Commission (Grant RECOVER WP 6). This work was also partly supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research, NIH (Grants ZIA AI001270 to L.D.N. and 1ZIAAI001265 to H.C.S.). This program is supported by the Agence Nationale de la Recherche (Grant ANR-10-LABX-69-01). K.K.’s group was supported by the Estonian Research Council, through Grants PRG117 and PRG377. R.H. was supported by an Al Jalila Foundation Seed Grant (Grant AJF202019), Dubai, United Arab Emirates, and a COVID-19 research grant (Grant CoV19-0307) from the University of Sharjah, United Arab Emirates. S.G.T. is supported by Investigator and Program Grants awarded by the National Health and Medical Research Council of Australia and a University of New South Wales COVID Rapid Response Initiative Grant. L.I. reports funding from Regione Lombardia, Italy (project “Risposta immune in pazienti con COVID-19 e co-morbidità”). This research was partially supported by the Instituto de Salud Carlos III (Grant COV20/0968). J.R.H. reports funding from Biomedical Advanced Research and Development Authority (Grant HHSO10201600031C). S.O. reports funding from Research Program on Emerging and Re-emerging Infectious Diseases from Japan Agency for Medical Research and Development (Grant JP20fk0108531). G.G. was supported by the ANR Flash COVID-19 program and SARS-CoV-2 Program of the Faculty of Medicine from Sorbonne University iCOVID programs. The 3C Study was conducted under a partnership agreement between INSERM, Victor Segalen Bordeaux 2 University, and Sanofi-Aventis. The Fondation pour la Recherche MĂ©dicale funded the preparation and initiation of the study. The 3C Study was also supported by the Caisse Nationale d’Assurance Maladie des Travailleurs SalariĂ©s, Direction gĂ©nĂ©rale de la SantĂ©, Mutuelle GĂ©nĂ©rale de l’Education Nationale, Institut de la LongĂ©vitĂ©, Conseils RĂ©gionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Program “Cohortes et collections de donnĂ©es biologiques.” S. Debette was supported by the University of Bordeaux Initiative of Excellence. P.K.G. reports funding from the National Cancer Institute, NIH, under Contract 75N91019D00024, Task Order 75N91021F00001. J.W. is supported by a Research Foundation - Flanders (FWO) Fundamental Clinical Mandate (Grant 1833317N). Sample processing at IrsiCaixa was possible thanks to the crowdfunding initiative YoMeCorono. Work at Vall d’Hebron was also partly supported by research funding from Instituto de Salud Carlos III Grant PI17/00660 cofinanced by the European Regional Development Fund (ERDF/FEDER). C.R.-G. and colleagues from the Canarian Health System Sequencing Hub were supported by the Instituto de Salud Carlos III (Grants COV20_01333 and COV20_01334), the Spanish Ministry for Science and Innovation (RTC-2017-6471-1; AEI/FEDER, European Union), FundaciĂłn DISA (Grants OA18/017 and OA20/024), and Cabildo Insular de Tenerife (Grants CGIEU0000219140 and “Apuestas cientĂ­ficas del ITER para colaborar en la lucha contra la COVID-19”). T.H.M. was supported by grants from the Novo Nordisk Foundation (Grants NNF20OC0064890 and NNF21OC0067157). C.M.B. is supported by a Michael Smith Foundation for Health Research Health Professional-Investigator Award. P.Q.H. and L. Hammarström were funded by the European Union’s Horizon 2020 research and innovation program (Antibody Therapy Against Coronavirus consortium, Grant 101003650). Work at Y.-L.L.’s laboratory in the University of Hong Kong (HKU) was supported by the Society for the Relief of Disabled Children. MBBS/PhD study of D.L. in HKU was supported by the Croucher Foundation. J.L.F. was supported in part by the Evaluation-Orientation de la CoopĂ©ration Scientifique (ECOS) Nord - CoopĂ©ration Scientifique France-Colombie (ECOS-Nord/Columbian Administrative department of Science, Technology and Innovation [COLCIENCIAS]/Colombian Ministry of National Education [MEN]/Colombian Institute of Educational Credit and Technical Studies Abroad [ICETEX, Grant 806-2018] and Colciencias Contract 713-2016 [Code 111574455633]). A. Klocperk was, in part, supported by Grants NU20-05-00282 and NV18-05-00162 issued by the Czech Health Research Council and Ministry of Health, Czech Republic. L.P. was funded by Program Project COVID-19 OSR-UniSR and Ministero della Salute (Grant COVID-2020-12371617). I.M. is a Senior Clinical Investigator at the Research Foundation–Flanders and is supported by the CSL Behring Chair of Primary Immunodeficiencies (PID); by the Katholieke Universiteit Leuven C1 Grant C16/18/007; by a Flanders Institute for Biotechnology-Grand Challenges - PID grant; by the FWO Grants G0C8517N, G0B5120N, and G0E8420N; and by the Jeffrey Modell Foundation. I.M. has received funding under the European Union’s Horizon 2020 research and innovation program (Grant Agreement 948959). E.A. received funding from the Hellenic Foundation for Research and Innovation (Grant INTERFLU 1574). M. Vidigal received funding from the SĂŁo Paulo Research Foundation (Grant 2020/09702-1) and JBS SA (Grant 69004). The NH-COVAIR study group consortium was supported by a grant from the Meath Foundation.Peer reviewe

    Roman furnaces of the Montagne Noire (France), instructions for use. Results of twenty years of experiments between archaeology and archaeometry

    No full text
    International audienceFrom the first century BC to the third century AD, the southern zone of the Montagne Noire located in the southern part of the French Massif Central, 15 km north of Carcassonne and 100 km east of Toulouse, was the place of an intensive production of iron. During the Roman Empire, this iron provided a long-distance trade like that shown by the chemical analyses (e.g. Baron et al., 2011) and was probably mostly for the Roman armies (Long et al., 2002).Twenty-five years of interdisciplinary researches, recently published in a monograph (Fabre et al. dir., 2016), have led to define a “Martys type” furnace on the basis of the morphological similarities of metallurgical structures employed and put together in batteries. The number of furnaces and the considerable size of the slags amounts are part of the evidence for the intensity of the iron production (about 110000 tons of metal in three centuries according to the estimations, e.g. Fabre et al. dir., 2016). How were the metallurgical operations conducted in Roman times in the “Martys type” furnaces?To find the way these metallurgical structures were used, more than twenty experiments have been carried on between the years 1991 and 2009, first in the archaeological furnaces reconstructed at Les Martys (Aude, France) and then on the experimental platform at Lastours (Aude, France) using furnaces as similar as possible to the archaeological ones. From case to case, natural draught or artificial blowing was employed. The products and wastes of the experimental reductions were compared with the archaeological ones on the basis of the mineralogical and chemical compositions of ores (carbonated derived vs sulfide derived) and slags showing the impact of the operating conditions. At the same time, two other experimental platforms were created: one was dedicated to experiments on a model (scale Âœ) equipped with measuring instruments (temperature, gas compositions
), the other was used to determine the role of different types of iron ores. The synthesis of the results from the three experimental platforms, including some archaeological comparisons with the same types of furnaces, “the thick-walled shaft furnaces” type established by Pleiner (Pleiner, 2000, 179), leads us today to confirm, in agreement with the archaeological data, that the Roman metallurgists selected one type of ore, the carbonated derived one, and to propose a procedure for the use of the Roman “Martys type” bloomery furnaces using at least partly natural draught

    Rare Earth Element Signatures of the Bled M’Dena Porphyry Molybdenum-Copper System, Eglab Massif (SW, Algeria)

    No full text
    International audienc

    Les minerais de fer de la Montagne Noire : minĂ©ralogie et chimie, quelques Ă©lĂ©ments de rĂ©ponse aux questions d’approvisionnement et de traitements minĂ©ralurgiques

    No full text
    International audienceCe livre fait suite Ă  Martys 1, paru en 1993 (rĂ©fĂ©rence 8761, Ă©puisĂ©). Il concerne les dĂ©buts (Ier s. a.C.) du grand centre sidĂ©rurgique romain situĂ© dans le domaine des Forges (Les Martys, Aude), au cƓur de la Montagne Noire. La premiĂšre partie prĂ©sente les rĂ©sultats des derniĂšres fouilles archĂ©ologiques (1988-1995) exĂ©cutĂ©es dans deux sites majeurs du domaine : d'une part, Monrouch, un secteur en grande partie conservĂ© intact depuis l'AntiquitĂ©, et dont la fouille a mis au jour une batterie de six bas fourneaux de rĂ©duction du type classique des Martys, encore pourvus, au moins partiellement, de leur systĂšme de ventilation, ainsi qu'une construction annexe, en bois et en terre ; d'autre part, le Grand Ferrier, qui, progressivement dĂ©truit par l'exploitation moderne des scories, n'offrait plus Ă  la fouille que de rares lambeaux de terrain encore en place : on y a dĂ©couvert, outre plusieurs foyers d'Ă©puration, un ensemble dĂ©sordonnĂ© de bas fourneaux, parmi lesquels un unique exemplaire de petit module, dont on a essayĂ© de comprendre la signification face Ă  plusieurs autres du type classique. L'Ă©tude des mobiliers (cĂ©ramiques, amphores, monnaies) a permis de distinguer les phases successives de ces premiers moments du site et montrĂ© l'enracinement de la communautĂ© des sidĂ©rurgistes dans la culture italique. Enfin les prospections effectuĂ©es autour des Martys ont rĂ©vĂ©lĂ© une forte densitĂ© d'ateliers sidĂ©rurgiques, dont l'organisation et la production font l'objet d'hypothĂšses. La deuxiĂšme partie est consacrĂ©e Ă  l'archĂ©omĂ©trie. Recueillis au cours des fouilles, quelques objets en fer et de nombreux Ă©chantillons (minerais, scories, dĂ©chets divers, Ă©lĂ©ments de bas fourneaux, sols d'ateliers, etc.) ont Ă©tĂ© examinĂ©s en laboratoire, Ă  l'aide de techniques souvent de pointe. En particulier la caractĂ©risation chimique du fer des Martys a conduit les archĂ©omĂštres Ă  identifier la prĂ©sence de ce fer dans les cargaisons de plusieurs Ă©paves (Ier s. a.C. et Ier s. p.C.) au large des Saintes-Maries-de-la-Mer, apportant ainsi de solides arguments Ă  la rĂ©alitĂ© de sa diffusion. La troisiĂšme partie constitue le compte rendu des expĂ©rimentations, dont l'objectif Ă©tait de comprendre par la pratique comment fonctionnaient ateliers et bas fourneaux, afin de pouvoir un jour fabriquer du fer dans les conditions d'il y a 2 000 ans, et justifier ainsi une production Ă©valuĂ©e Ă  110 000 tonnes pendant trois siĂšcles

    Le fer de la Montagne Noire : derniers résultats des études de traçabilité

    No full text
    International audienceCe livre fait suite Ă  Martys 1, paru en 1993 (rĂ©fĂ©rence 8761, Ă©puisĂ©). Il concerne les dĂ©buts (Ier s. a.C.) du grand centre sidĂ©rurgique romain situĂ© dans le domaine des Forges (Les Martys, Aude), au cƓur de la Montagne Noire. La premiĂšre partie prĂ©sente les rĂ©sultats des derniĂšres fouilles archĂ©ologiques (1988-1995) exĂ©cutĂ©es dans deux sites majeurs du domaine : d'une part, Monrouch, un secteur en grande partie conservĂ© intact depuis l'AntiquitĂ©, et dont la fouille a mis au jour une batterie de six bas fourneaux de rĂ©duction du type classique des Martys, encore pourvus, au moins partiellement, de leur systĂšme de ventilation, ainsi qu'une construction annexe, en bois et en terre ; d'autre part, le Grand Ferrier, qui, progressivement dĂ©truit par l'exploitation moderne des scories, n'offrait plus Ă  la fouille que de rares lambeaux de terrain encore en place : on y a dĂ©couvert, outre plusieurs foyers d'Ă©puration, un ensemble dĂ©sordonnĂ© de bas fourneaux, parmi lesquels un unique exemplaire de petit module, dont on a essayĂ© de comprendre la signification face Ă  plusieurs autres du type classique. L'Ă©tude des mobiliers (cĂ©ramiques, amphores, monnaies) a permis de distinguer les phases successives de ces premiers moments du site et montrĂ© l'enracinement de la communautĂ© des sidĂ©rurgistes dans la culture italique. Enfin les prospections effectuĂ©es autour des Martys ont rĂ©vĂ©lĂ© une forte densitĂ© d'ateliers sidĂ©rurgiques, dont l'organisation et la production font l'objet d'hypothĂšses. La deuxiĂšme partie est consacrĂ©e Ă  l'archĂ©omĂ©trie. Recueillis au cours des fouilles, quelques objets en fer et de nombreux Ă©chantillons (minerais, scories, dĂ©chets divers, Ă©lĂ©ments de bas fourneaux, sols d'ateliers, etc.) ont Ă©tĂ© examinĂ©s en laboratoire, Ă  l'aide de techniques souvent de pointe. En particulier la caractĂ©risation chimique du fer des Martys a conduit les archĂ©omĂštres Ă  identifier la prĂ©sence de ce fer dans les cargaisons de plusieurs Ă©paves (Ier s. a.C. et Ier s. p.C.) au large des Saintes-Maries-de-la-Mer, apportant ainsi de solides arguments Ă  la rĂ©alitĂ© de sa diffusion. La troisiĂšme partie constitue le compte rendu des expĂ©rimentations, dont l'objectif Ă©tait de comprendre par la pratique comment fonctionnaient ateliers et bas fourneaux, afin de pouvoir un jour fabriquer du fer dans les conditions d'il y a 2 000 ans, et justifier ainsi une production Ă©valuĂ©e Ă  110 000 tonnes pendant trois siĂšcles

    Textural Features and Chemical Evolution in Tantalum Oxides: Magmatic Versus Hydrothermal Origins for Ta Mineralization in the Tanco Lower Pegmatite, Manitoba, Canada

    No full text
    International audienceTantalum, a key element in the electronics industry, is produced mainly from rare element granitic pegmatites. Although their internal structure, mineralogy, and petrogenesis have been extensively investigated, the processes that control tantalum mineralization remain poorly understood, in particular the role of fluids in the crystallization of tantalum ore. One of the major problems arises from the difficulty in distinguishing primary magmatic from secondary, hydrothermal textures in such complex rocks. In the Tanco pegmatite, Manitoba, Canada, tantalum mineralization shows a complexity that reflects the complex petrogenesis of its host pegmatite. Eight different families of tantalum oxides occur in various associations and compositions. The Tanco Lower pegmatite is an isolated body beneath the main pegmatite body that contains abundant tantalum associated with mica alteration. Tantalum mineralization in the Tanco Lower pegmatite occurs as three different styles. Facies 1 is hosted by the wall zone and hosts primary magmatic Ta oxides with simple textures (progressive and oscillatory zoning). Facies 2 is hosted by the lower and upper intermediate zones where most mineralization occurs with dendritic amblygonite. Facies 3 is hosted by the central zone, which is affected by mica alteration. In this latter facies, the oxides show particularly complex textures evident from X-ray mapping. By combining information obtained from textural observations and chemical analyses, we are able to determine the paragenesis for each Ta oxide-bearing mineral assemblage and hence to evaluate the relative contributions of magmatic versus hydrothermal processes. In complex associations, we observe relics of primary Ta phases that are replaced or overgrown by secondary Ta phases. We propose the paragenetic sequence: columbite group minerals + microlite (early primary magmatic) -> columbite + wodginite group minerals + microlite (late primary magmatic) -> wodginite group minerals + microlite (secondary magmatic) -> ferrotapiolite (secondary magmatic). In addition, chemical variations were identified in the columbite and wodginite group minerals, both at the crystal scale and at the pegmatite scale. Columbite and wodginite group minerals show the typical Ta* = Ta/(Ta + Nb) and Mn* = Mn/(Mn + Fe) (atomic ratios) increase from earlier to later zones. At the crystal scale, the increase in Ta* and Mn* with fractionation in the columbite group is explained by the higher solubility of the Ta end member relative to the Nb end member and the crystallization of other minerals that shift the melt composition toward Mn* enrichment. The fractionation trend in the wodginite group shows Fe enrichment, which is consistent with experimental results that show a higher solubility of the Fe end member relative to the Mn end member in columbite group minerals. Considering the available experimental data, as well as the intimate association of Ta oxides with zircon observed in this study, we conclude that tantalum mineralization is a product of direct crystallization from the melt rather than hydrothermal in origin. Fluids are attributed an indirect role only, as they could have brought minor elements (Fe, Mn, or Ca) into the melt, which resulted in the crystallization of secondary Ta phases. Textural evidence shows that the late secondary phases were formed at the same time as mica alteration. We suggest that mica alteration was due to a late melt, rather than a hydrothermal fluid, that reacted with the blocky K-feldspar of the central zone. During the alteration event, tantalum was remobilized from primary phases and incorporated in new, secondary Ta oxide species

    Le fer de la Montagne Noire : derniers résultats des études de traçabilité

    Get PDF
    International audienceCe livre fait suite Ă  Martys 1, paru en 1993 (rĂ©fĂ©rence 8761, Ă©puisĂ©). Il concerne les dĂ©buts (Ier s. a.C.) du grand centre sidĂ©rurgique romain situĂ© dans le domaine des Forges (Les Martys, Aude), au cƓur de la Montagne Noire. La premiĂšre partie prĂ©sente les rĂ©sultats des derniĂšres fouilles archĂ©ologiques (1988-1995) exĂ©cutĂ©es dans deux sites majeurs du domaine : d'une part, Monrouch, un secteur en grande partie conservĂ© intact depuis l'AntiquitĂ©, et dont la fouille a mis au jour une batterie de six bas fourneaux de rĂ©duction du type classique des Martys, encore pourvus, au moins partiellement, de leur systĂšme de ventilation, ainsi qu'une construction annexe, en bois et en terre ; d'autre part, le Grand Ferrier, qui, progressivement dĂ©truit par l'exploitation moderne des scories, n'offrait plus Ă  la fouille que de rares lambeaux de terrain encore en place : on y a dĂ©couvert, outre plusieurs foyers d'Ă©puration, un ensemble dĂ©sordonnĂ© de bas fourneaux, parmi lesquels un unique exemplaire de petit module, dont on a essayĂ© de comprendre la signification face Ă  plusieurs autres du type classique. L'Ă©tude des mobiliers (cĂ©ramiques, amphores, monnaies) a permis de distinguer les phases successives de ces premiers moments du site et montrĂ© l'enracinement de la communautĂ© des sidĂ©rurgistes dans la culture italique. Enfin les prospections effectuĂ©es autour des Martys ont rĂ©vĂ©lĂ© une forte densitĂ© d'ateliers sidĂ©rurgiques, dont l'organisation et la production font l'objet d'hypothĂšses. La deuxiĂšme partie est consacrĂ©e Ă  l'archĂ©omĂ©trie. Recueillis au cours des fouilles, quelques objets en fer et de nombreux Ă©chantillons (minerais, scories, dĂ©chets divers, Ă©lĂ©ments de bas fourneaux, sols d'ateliers, etc.) ont Ă©tĂ© examinĂ©s en laboratoire, Ă  l'aide de techniques souvent de pointe. En particulier la caractĂ©risation chimique du fer des Martys a conduit les archĂ©omĂštres Ă  identifier la prĂ©sence de ce fer dans les cargaisons de plusieurs Ă©paves (Ier s. a.C. et Ier s. p.C.) au large des Saintes-Maries-de-la-Mer, apportant ainsi de solides arguments Ă  la rĂ©alitĂ© de sa diffusion. La troisiĂšme partie constitue le compte rendu des expĂ©rimentations, dont l'objectif Ă©tait de comprendre par la pratique comment fonctionnaient ateliers et bas fourneaux, afin de pouvoir un jour fabriquer du fer dans les conditions d'il y a 2 000 ans, et justifier ainsi une production Ă©valuĂ©e Ă  110 000 tonnes pendant trois siĂšcles

    Magmatic to hydrothermal zircons: Textural and chemical evolution

    No full text
    International audienceZircon is undoubtedly the most sought-after mineral forgeochemical studies, for its ability to provide information onits host rock, spanning from geochronology, tracing of sourceand processes, geothermometry, and, recently, redoxconditions [1]. However, it is crucial to ascertain its primaryorigin, and in the past two decades there has been increasingevidence of its crystallization from hydrothermal fluids [2].Two of the main characteristics that are widely used toascertain the magmatic or hydrothermal origin of zircon aretexture and trace-element chemistry. However, most of thesedata are contradictory and can be similarly attributed to aprimary and secondary origin [3], resulting in a poorunderstanding of hydrothermal zircon characteristics.We present data on a suite of zircons from theAmbohimirahavavy alkaline complex, Madagascar, thatdisplay impressive textural, morphological and compositionalvariations, strongly suggesting a span in origin from magmaticto hydrothermal (Fig. 1). Clearly magmatic zircons yield agesof 20.40 ± 0.16 and 21.21 ± 0.44 Ma. Hydrothermal zirconyields a similar age of 20.64 ± 0.48 Ma. Evidence forhydrothermal origin includes its occurrence with quartz inpseudomorphs after primary minerals, as botryoidal crystalsfilling cavities, and precipitation in exoskarn [4]. Strongvariations in the amounts and distribution of trace element alsooccur among different sectors in zoned crystals
    • 

    corecore