135 research outputs found

    Embedded Network Test-Bed for Validating Real-Time Control Algorithms to Ensure Optimal Time Domain Performance

    Get PDF
    The paper presents a Stateflow based network test-bed to validate real-time optimal control algorithms. Genetic Algorithm (GA) based time domain performance index minimization is attempted for tuning of PI controller to handle a balanced lag and delay type First Order Plus Time Delay (FOPTD) process over network. The tuning performance is validated on a real-time communication network with artificially simulated stochastic delay, packet loss and out-of order packets characterizing the network.Comment: 6 pages, 12 figure

    Dimensional advantage in secure information trading via the noisy dense coding protocol

    Full text link
    The quantum dense coding (DC) protocol, which has no security feature, deals with the transmission of classical information encoded in a quantum state by using shared entanglement between a single sender and a single receiver. Its appropriate variant has been established as a quantum key distribution (QKD) scheme for shared two-qubit maximally entangled states, with the security proof utilizing the uncertainty relation of complementary observables and the Shor-Preskill entanglement purification scheme. We present the DC-based QKD protocol for higher dimensional systems and report the lower bounds on secret key rate, when the shared state is a two-qudit maximally entangled state, and mixtures of maximally entangled states with different ranks. The analysis also includes the impact of noisy channels on the secure key rates, before and after encoding. In both the noiseless and the noisy scenarios, we demonstrate that the key rate as well as the robustness of the protocol against noise increases with the dimension. Further, we prove that the set of useless states in the DC-based QKD protocol is convex and compact.Comment: 11 pages, 3 figure

    Adaptive Gain and Order Scheduling of Optimal Fractional Order PI{\lambda}D{\mu} Controllers with Radial Basis Function Neural-Network

    Get PDF
    Gain and order scheduling of fractional order (FO) PI{\lambda}D{\mu} controllers are studied in this paper considering four different classes of higher order processes. The mapping between the optimum PID/FOPID controller parameters and the reduced order process models are done using Radial Basis Function (RBF) type Artificial Neural Network (ANN). Simulation studies have been done to show the effectiveness of the RBFNN for online scheduling of such controllers with random change in set-point and process parameters.Comment: 6 pages, 12 figure

    Machine Learning-based Linear regression way to deal with making data science model for checking the sufficiency of night curfew in Maharashtra, India

    Get PDF
    The birthplace of the novel Covid-19 sickness or COVID-19 began its spread around Wuhan city, China. The spread of this novel infection sickness began toward the start of December 2019. The Covid-19 illness spreads from one individual to another through hacking, sniffling, etc. To stop the spreading of the novel Covid-19 infection the distinctive nation has presented diverse strategies. Some regularly utilized methods are lockdown, night curfew, etc. The fundamental intention of the systems was to stop the social events and leaving homes without serious issues. Utilizing a diverse system Covid-19 first stage can address for saving individuals. Presently the second influx of this novel Covid illness has begun its top from the mid of April-May. The second convergence of this novel Covid disorder flooded all through the world and in India too. To stop the spread of this novel Covid sickness India's richest state Maharashtra government constrained the decision of night curfew. In this paper, we are taking as a relevant examination the night curfew on a schedule of Maharashtra. Here, we study that this system may or may not be able to stop the spread of pandemics. We are using the Machine learning(ML) approach to managing regulate study this case. ML has various systems yet among all of those here we use Linear Regression for the current circumstance. The reproduced insight that readies the plan orchestrated to learn with no other person. Linear Regression is the affirmed strategy for looking over the connection between two sections. Between the two segments, one is astute and another is a seen variable

    Sustained Benefits of Ranibizumab with or without Laser in Branch Retinal Vein Occlusion: 24-Month Results of the BRIGHTER Study

    Get PDF
    Purpose To evaluate the long-term (24-month) efficacy and safety of ranibizumab 0.5 mg administered pro re nata (PRN) with or without laser using an individualized visual acuity (VA) stabilization criteria in patients with visual impairment due to macular edema secondary to branch retinal vein occlusion (BRVO). Design Phase IIIb, open-label, randomized, active-controlled, 3-arm, multicenter study. Participants A total of 455 patients. Methods Patients were randomized (2:2:1) to ranibizumab 0.5 mg (n = 183), ranibizumab 0.5 mg with laser (n = 180), or laser (with optional ranibizumab 0.5 mg after month 6; n = 92). After initial 3 monthly injections, patients in the ranibizumab with or without laser arms received VA stabilization criteria-driven PRN treatment. Patients assigned to the laser arm received laser at the investigator's discretion. Main Outcome Measures Mean (and mean average) change in best-corrected visual acuity (BCVA) and central subfield thickness (CSFT) from baseline to month 24, and safety over 24 months. Results A total of 380 patients (83.5%) completed the study. Ranibizumab with or without laser led to superior BCVA outcomes versus laser (monotherapy and combined with ranibizumab from month 6; 17.3/15.5 vs. 11.6 letters; P P P = 0.4259). A greater reduction in CSFT was seen with ranibizumab with or without laser versus laser monotherapy over 24 months from baseline (ranibizumab monotherapy −224.7 μm, ranibizumab with laser −248.9 μm, laser [monotherapy and combined with ranibizumab from month 6] −197.5 μm). Presence of macular ischemia did not affect BCVA outcome or treatment frequency. There were no reports of neovascular glaucoma or iris neovascularization. No new safety signals were identified. Conclusions The BRIGHTER study results confirmed the long-term efficacy and safety profile of PRN dosing driven by individualized VA stabilization criteria using ranibizumab 0.5 mg in patients with BRVO. Addition of laser did not lead to better functional outcomes or lower treatment need. The safety results were consistent with the well-established safety profile of ranibizumab

    The Development of Ofatumumab, a Fully Human Anti-CD20 Monoclonal Antibody for Practical Use in Relapsing Multiple Sclerosis Treatment.

    Get PDF
    The importance of B cells in multiple sclerosis (MS) has been demonstrated through the advent of B-cell-depleting anti-CD20 antibody therapies. Ofatumumab is the first fully human anti-CD20 monoclonal antibody (mAb) developed and tested for subcutaneous (SC) self-administration at monthly doses of 20 mg, and has been approved in the US, UK, EU, and other regions and countries worldwide for the treatment of relapsing MS. The development goal of ofatumumab was to obtain a highly efficacious anti-CD20 therapy, with a safety and tolerability profile that allows for self-administration by MS patients at home and a positive benefit-risk balance for use in the broad relapsing MS population. This development goal was enabled by the unique binding site, higher affinity to B cells, and higher potency of ofatumumab compared to previous anti-CD20 mAbs; these properties of ofatumumab facilitate rapid B-cell depletion and maintenance with a low dose at a low injection volume (20 mg/0.4 ml). The high potency in turn enables the selective targeting of B cells that reside in the lymphatic system via subcutaneous (SC) administration. Through a comprehensive dose-finding program in two phase 2 studies (one intravenous and one SC) and model simulations, it was found that safety and tolerability can be further improved, and the risk of systemic injection-related reactions (IRRs) minimized, by avoiding doses ≥ 30 mg, and by reaching initial and rapid B-cell depletion via stepwise weekly administration of ofatumumab at Weeks 0, 1, and 2 (instead of a single high dose). Once near-complete B-cell depletion is reached, it can be maintained by monthly doses of 20 mg/0.4 ml. Indeed, in phase 3 trials (ASCLEPIOS I/II), rapid and sustained near-complete B-cell depletion (largely independent of body weight, race and other factors) was observed with this dosing regimen, which resulted in superior efficacy of ofatumumab versus teriflunomide on relapse rates, disability worsening, neuronal injury (serum neurofilament light chain), and imaging outcomes. Likely due to its fully human nature, ofatumumab has a low immunogenic risk profile-only 2 of 914 patients receiving ofatumumab in ASCLEPIOS I/II developed anti-drug antibodies-and this may also underlie the infrequent IRRs (20% with ofatumumab vs. 15% with the placebo injection in the teriflunomide arm) that were mostly (99.8%) mild to moderate in severity. The overall rates of infections and serious infections in patients treated with ofatumumab were similar to those in patients treated with teriflunomide (51.6% vs. 52.7% and 2.5% vs. 1.8%, respectively). The benefit-risk profile of ofatumumab was favorable compared to teriflunomide in the broad RMS population, and also in the predefined subgroups of both recently diagnosed and/or treatment-naïve patients, as well as previously disease-modifying therapy-treated patients. Interim data from the ongoing extension study (ALITHIOS) have shown that long-term treatment with ofatumumab up to 4 years is well-tolerated in RMS patients, with no new safety risks identified. In parallel to the phase 3 trials in which SC administration was carried out with a pre-filled syringe, an autoinjector pen for more convenient self-administration of the ofatumumab 20 mg dose was developed and is available for use in clinical practice

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    Get PDF
    Peer reviewe

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe
    • …
    corecore