1,975 research outputs found

    Eyelid Cosmetic Enhancements and Their Associated Ocular Adverse Effects

    Get PDF
    Numerous cosmetic enhancements and augmentations to the natural appearance of the periorbital area are readily available today. Due to the increasing popularity of these cosmetic procedures, it is important for ophthalmologists to be aware of their potential risks, complications and adverse effects. The aim of this literature review was to introduce some of the most common ocular cosmetic enhancements and provide a comprehensive overview of their associated adverse effects reported in various medical journals. PubMed, Embase, and Google Scholar were used to identify articles related to the following ocular cosmetic procedures; eyelash extensions, permanent eyelid tattooing, and eyelash dyeing. The most common complication associated with eyelash extensions was allergic blepharitis (79%). Allergic granulomatous reactions were the predominant complication in patients who underwent eyelid tattooing (56%). Besides, 60% of subjects who underwent eyelash dyeing experienced allergic contact dermatitis as the most common adverse effect. Although millions of these procedures are performed annually without any adverse effects, reports of complications continue to increase in the literature. Knowledge of the possible adverse effects associated with these enhancements is important for eye care providers and licensed estheticians to be aware of given both the direct and indirect effects they may have on ocular health and visual outcomes

    Eyelid Cosmetic Enhancements and Their Associated Ocular Adverse Effects

    Get PDF
    Numerous cosmetic enhancements and augmentations to the natural appearance of the periorbital area are readily available today. Due to the increasing popularity of these cosmetic procedures, it is important for ophthalmologists to be aware of their potential risks, complications and adverse effects. The aim of this literature review was to introduce some of the most common ocular cosmetic enhancements and provide a comprehensive overview of their associated adverse effects reported in various medical journals. PubMed, Embase, and Google Scholar were used to identify articles related to the following ocular cosmetic procedures; eyelash extensions, permanent eyelid tattooing, and eyelash dyeing. The most common complication associated with eyelash extensions was allergic blepharitis (79%). Allergic granulomatous reactions were the predominant complication in patients who underwent eyelid tattooing (56%). Besides, 60% of subjects who underwent eyelash dyeing experienced allergic contact dermatitis as the most common adverse effect. Although millions of these procedures are performed annually without any adverse effects, reports of complications continue to increase in the literature. Knowledge of the possible adverse effects associated with these enhancements is important for eye care providers and licensed estheticians to be aware of given both the direct and indirect effects they may have on ocular health and visual outcomes

    Overview of the SDSS-IV MaNGA Survey: Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA\u27s key science goals and present prototype observations to demonstrate MaNGA\u27s scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12\u27\u27 (19 fibers) to 32\u27\u27 (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ~ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å–1 per 2\u27\u27 fiber) at 23 AB mag arcsec–2, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * ≳ 109 M ☉ using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA\u27s ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA\u27s spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Overview of the SDSS-IV MaNGA survey: mapping nearby galaxies at Apache Point Observatory

    Get PDF
    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ~ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å–1 per 2'' fiber) at 23 AB mag arcsec–2, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * 109 M ☉ using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr

    JWST reveals a possible z11z \sim 11 galaxy merger in triply-lensed MACS0647-JD

    Get PDF
    MACS0647-JD is a triply-lensed z11z\sim11 galaxy originally discovered with the Hubble Space Telescope. Here we report new JWST imaging, which clearly resolves MACS0647-JD as having two components that are either merging galaxies or stellar complexes within a single galaxy. Both are very small, with stellar masses 108M\sim10^8\,M_\odot and radii r<100pcr<100\,\rm pc. The brighter larger component "A" is intrinsically very blue (β2.6\beta\sim-2.6), likely due to very recent star formation and no dust, and is spatially extended with an effective radius 70pc\sim70\,\rm pc. The smaller component "B" appears redder (β2\beta\sim-2), likely because it is older (100200Myr100-200\,\rm Myr) with mild dust extinction (AV0.1magA_V\sim0.1\,\rm mag), and a smaller radius 20pc\sim20\,\rm pc. We identify galaxies with similar colors in a high-redshift simulation, finding their star formation histories to be out of phase. With an estimated stellar mass ratio of roughly 2:1 and physical projected separation 400pc\sim400\,\rm pc, we may be witnessing a galaxy merger 400 million years after the Big Bang. We also identify a candidate companion galaxy C 3kpc\sim3\,{\rm kpc} away, likely destined to merge with galaxies A and B. The combined light from galaxies A+B is magnified by factors of \sim8, 5, and 2 in three lensed images JD1, 2, and 3 with F356W fluxes 322\sim322, 203203, 86nJy86\,\rm nJy (AB mag 25.1, 25.6, 26.6). MACS0647-JD is significantly brighter than other galaxies recently discovered at similar redshifts with JWST. Without magnification, it would have AB mag 27.3 (MUV=20.4M_{UV}=-20.4). With a high confidence level, we obtain a photometric redshift of z=10.6±0.3z=10.6\pm0.3 based on photometry measured in 6 NIRCam filters spanning 15μm1-5\rm\mu m, out to 4300A˚4300\,\r{A} rest-frame. JWST NIRSpec observations planned for January 2023 will deliver a spectroscopic redshift and a more detailed study of the physical properties of MACS0647-JD.Comment: 27 pages, 14 figures, submitted to Natur

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library

    Get PDF
    Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)
    corecore