35 research outputs found

    Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton-proton collisions at root s=13TeV

    Get PDF
    A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9 fb(-1). The signal is characterized by a large missing transverse momentum recoiling against a bottom quark-antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+a) and on parameters of a baryonic Z simplified model. The 2HDM+a model is tested experimentally for the first time. For the baryonic Z model, the presented results constitute the most stringent constraints to date.Peer reviewe

    A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

    Get PDF
    We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ÂŻ

    Search for strongly interacting massive particles generating trackless jets in proton-proton collisions at s = 13 TeV

    Get PDF
    A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 16.1 fb - 1 , collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 GeV are excluded and further sensitivity is explored towards higher masses

    Evidence for Top Quark Production in Nucleus-Nucleus Collisions

    Get PDF
    Peer reviewe

    Observation of the B-s(0) -> X(3872)phi Decay

    Get PDF
    Using a data sample of proton-proton collisions at root s = 13 TeV, corresponding to an integrated luminosity of 140 fb(-1) collected by the CMS experiment in 2016-2018, the B-s(0) -> X(3872)phi decay is observed. Decays into J/psi pi(+)pi(-) and K+K- are used to reconstruct, respectively, the X(3872) and phi. The ratio of the product of branching fractions B[B-s(0) -> X(3872)phi]B[X(3872) -> J/psi pi(+)pi(-)] to the product B[B-s(0) ->psi(2S)phi]B[psi(2S) -> J/psi pi(+)pi(-)] is measured to be [2.21 +/- 0.29(stat) +/- 0.17(syst)]%. The ratio B[B-s(0) -> X(3872)phi]/B[B-0 -> X(3872)K-0] is found to be consistent with one, while the ratio B[B-s(0) -> X(3872)phi]/B[B+-> X(3872)K+] is two times smaller. This suggests a difference in the production dynamics of the X(3872) in B-0 and B(0)s meson decays compared to B+. The reported observation may shed new light on the nature of the X(3872) particle.Peer reviewe

    Observation of a New Excited Beauty Strange Baryon Decaying to Ξb- π+π-

    Get PDF
    The Ξb-π+π- invariant mass spectrum is investigated with an event sample of proton-proton collisions at s=13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 140 fb-1. The ground state Ξb- is reconstructed via its decays to J/ψΞ- and J/ψΛK-. A narrow resonance, labeled Ξb(6100)-, is observed at a Ξb-π+π- invariant mass of 6100.3±0.2(stat)±0.1(syst)±0.6(Ξb-) MeV, where the last uncertainty reflects the precision of the Ξb- baryon mass. The upper limit on the Ξb(6100)- natural width is determined to be 1.9 MeV at 95% confidence level. The low Ξb(6100)- signal yield observed in data does not allow a measurement of the quantum numbers of the new state. However, following analogies with the established excited Ξc baryon states, the new Ξb(6100)- resonance and its decay sequence are consistent with the orbitally excited Ξb- baryon, with spin and parity quantum numbers JP=3/2-

    Search for the production of W^{\pm} W^{\pm} W^{\mp} events at \sqrt{s} = 13 TeV

    Get PDF
    A search for the production of events containing three W bosons predicted by the standard model is reported. The search is based on a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment at the CERN LHC and corresponding to a total integrated luminosity of 35.9 fb^{-1}. The search is performed in final states with three leptons (electrons or muons), or with two same-charge leptons plus two jets. The observed (expected) significance of the signal for W^{\pm} W^{\pm} W^{\mp} production is 0.60 (1.78) standard deviations, and the ratio of the measured signal yield to that expected from the standard model is 0.34_{-0.34}^{+0.62}. Limits are placed on three anomalous quartic gauge couplings and on the production of massive axionlike particles

    Search for dark matter produced in association with a leptonically decaying Z boson in proton–proton collisions at s√=13TeV

    Get PDF
    A search for dark matter particles is performed using events with a Z boson candidate and large missing transverse momentum. The analysis is based on proton–proton collision data at a center-of-mass energy of 13TeV, collected by the CMS experiment at the LHC in 2016–2018, corresponding to an integrated luminosity of 137fb−1. The search uses the decay channels Z→ee and Z→ΌΌ. No significant excess of events is observed over the background expected from the standard model. Limits are set on dark matter particle production in the context of simplified models with vector, axial-vector, scalar, and pseudoscalar mediators, as well as on a two-Higgs-doublet model with an additional pseudoscalar mediator. In addition, limits are provided for spin-dependent and spin-independent scattering cross sections and are compared to those from direct-detection experiments. The results are also interpreted in the context of models of invisible Higgs boson decays, unparticles, and large extra dimensions.SCOAP

    Measurements of pp → ZZ production cross sections and constraints on anomalous triple gauge couplings at √ = 13 TeV

    Get PDF
    © 2021 The CMS Collaboration. The production of Z boson pairs in proton–proton (pp) collisions, pp → (Z/∗)(Z/∗) → 2ℓ2ℓâ€Č, where ℓ,ℓâ€Č = e or ÎŒ, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 137fb−1, collected during 2016–2018. The ZZ production cross section, tot(pp → ZZ) = 17.4 ± 0.3 (stat) ± 0.5 (syst) ± 0.4 (Theo) ± 0.3 (lumi) pb, measured for events with two pairs of opposite-sign, same-flavor leptons produced in the mass region 60 < ℓ+ℓ− < 120 GeV is consistent with standard model predictions. Differential cross sections are also measured and agree with theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ couplings.SCOAP
    corecore