50 research outputs found

    Colony-stimulating factor-1 (CSF-1) rescues osteoblast attachment, survival and sorting of beta-actin mRNA in the toothless (tl-osteopetrotic) mutation in the rat

    Get PDF
    We have shown that in the osteopetrotic rat mutation toothless (tl) osteoblasts are absent from older bone surfaces in mutants and that mutant osteoblasts in vivo lack the prominent stress fiber bundles polarized along bone surfaces in osteoblasts from normal littermates. Our recent data demonstrate that in normal osteoblasts in vitro beta- and gamma-actin mRNAs have different, characteristic intracellular distributions and that tl (mutant) osteoblasts fail to differentially sort these mRNAs. Because bone resorption and formation are highly interdependent and injections of CSF-1, a growth factor, increase bone resorption and growth in tl rats, we examined the effects of CSF-1 treatment on osteoblast survival and ultrastructure in vivo and ability to sort actin mRNAs in vitro. Neonatal CSF-1 treatment of mutants restores osteoblasts on older bone surfaces, normalizes the intracellular distribution of stress fibers in osteoblasts in vivo and promotes normal sorting of beta-actin mRNA in mutant osteoblasts in vitro without normalizing gamma-actin distribution. These data suggest the beta- and gamma-actin mRNAs in osteoblasts are sorted by different mechanisms and that the differential sorting of beta-actin mRNA is related to the characteristic polarization of stress fibers in osteoblasts and their survival on bone surfaces. This experimental system can be used to explore the relationships and regulation of these aspects of cell and tissue biology

    Cancer of the ampulla of Vater: analysis of the whole genome sequence exposes a potential therapeutic vulnerability

    Get PDF
    BACKGROUND: Recent advances in the treatment of cancer have focused on targeting genomic aberrations with selective therapeutic agents. In rare tumors, where large-scale clinical trials are daunting, this targeted genomic approach offers a new perspective and hope for improved treatments. Cancers of the ampulla of Vater are rare tumors that comprise only about 0.2% of gastrointestinal cancers. Consequently, they are often treated as either distal common bile duct or pancreatic cancers. METHODS: We analyzed DNA from a resected cancer of the ampulla of Vater and whole blood DNA from a 63 year-old man who underwent a pancreaticoduodenectomy by whole genome sequencing, achieving 37× and 40× coverage, respectively. We determined somatic mutations and structural alterations. RESULTS: We identified relevant aberrations, including deleterious mutations of KRAS and SMAD4 as well as a homozygous focal deletion of the PTEN tumor suppressor gene. These findings suggest that these tumors have a distinct oncogenesis from either common bile duct cancer or pancreatic cancer. Furthermore, this combination of genomic aberrations suggests a therapeutic context for dual mTOR/PI3K inhibition. CONCLUSIONS: Whole genome sequencing can elucidate an oncogenic context and expose potential therapeutic vulnerabilities in rare cancers

    Random DNA fragmentation allows detection of single-copy, single-exon alterations of copy number by oligonucleotide array CGH in clinical FFPE samples

    Get PDF
    Genomic technologies, such as array comparative genomic hybridization (aCGH), increasingly offer definitive gene dosage profiles in clinical samples. Historically, copy number profiling was limited to large fresh-frozen tumors where intact DNA could be readily extracted. Genomic analyses of pre-neoplastic tumors and diagnostic biopsies are often limited to DNA processed by formalin-fixation and paraffin-embedding (FFPE). We present specialized protocols for DNA extraction and processing from FFPE tissues utilizing DNase processing to generate randomly fragmented DNA. The protocols are applied to FFPE clinical samples of varied tumor types, from multiple institutions and of varied block age. Direct comparative analyses with regression coefficient were calculated on split-sample (portion fresh/portion FFPE) of colorectal tumor samples. We show equal detection of a homozygous loss of SMAD4 at the exon-level in the SW480 cell line and gene-specific alterations in the split tumor samples. aCGH application to a set of archival FFPE samples of skin squamous cell carcinomas detected a novel hemizygous deletion in INPP5A on 10q26.3. Finally we present data on derivative of log ratio, a particular sensitive detector of measurement variance, for 216 sequential hybridizations to assess protocol reliability over a wide range of FFPE samples

    The role of networks to overcome large-scale challenges in tomography: The non-clinical tomography users research network

    Get PDF
    Our ability to visualize and quantify the internal structures of objects via computed tomography (CT) has fundamentally transformed science. As tomographic tools have become more broadly accessible, researchers across diverse disciplines have embraced the ability to investigate the 3D structure-function relationships of an enormous array of items. Whether studying organismal biology, animal models for human health, iterative manufacturing techniques, experimental medical devices, engineering structures, geological and planetary samples, prehistoric artifacts, or fossilized organisms, computed tomography has led to extensive methodological and basic sciences advances and is now a core element in science, technology, engineering, and mathematics (STEM) research and outreach toolkits. Tomorrow's scientific progress is built upon today's innovations. In our data-rich world, this requires access not only to publications but also to supporting data. Reliance on proprietary technologies, combined with the varied objectives of diverse research groups, has resulted in a fragmented tomography-imaging landscape, one that is functional at the individual lab level yet lacks the standardization needed to support efficient and equitable exchange and reuse of data. Developing standards and pipelines for the creation of new and future data, which can also be applied to existing datasets is a challenge that becomes increasingly difficult as the amount and diversity of legacy data grows. Global networks of CT users have proved an effective approach to addressing this kind of multifaceted challenge across a range of fields. Here we describe ongoing efforts to address barriers to recently proposed FAIR (Findability, Accessibility, Interoperability, Reuse) and open science principles by assembling interested parties from research and education communities, industry, publishers, and data repositories to approach these issues jointly in a focused, efficient, and practical way. By outlining the benefits of networks, generally, and drawing on examples from efforts by the Non-Clinical Tomography Users Research Network (NoCTURN), specifically, we illustrate how standardization of data and metadata for reuse can foster interdisciplinary collaborations and create new opportunities for future-looking, large-scale data initiatives

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The role of networks to overcome large-scale challenges in tomography : the non-clinical tomography users research network

    Get PDF
    Our ability to visualize and quantify the internal structures of objects via computed tomography (CT) has fundamentally transformed science. As tomographic tools have become more broadly accessible, researchers across diverse disciplines have embraced the ability to investigate the 3D structure-function relationships of an enormous array of items. Whether studying organismal biology, animal models for human health, iterative manufacturing techniques, experimental medical devices, engineering structures, geological and planetary samples, prehistoric artifacts, or fossilized organisms, computed tomography has led to extensive methodological and basic sciences advances and is now a core element in science, technology, engineering, and mathematics (STEM) research and outreach toolkits. Tomorrow's scientific progress is built upon today's innovations. In our data-rich world, this requires access not only to publications but also to supporting data. Reliance on proprietary technologies, combined with the varied objectives of diverse research groups, has resulted in a fragmented tomography-imaging landscape, one that is functional at the individual lab level yet lacks the standardization needed to support efficient and equitable exchange and reuse of data. Developing standards and pipelines for the creation of new and future data, which can also be applied to existing datasets is a challenge that becomes increasingly difficult as the amount and diversity of legacy data grows. Global networks of CT users have proved an effective approach to addressing this kind of multifaceted challenge across a range of fields. Here we describe ongoing efforts to address barriers to recently proposed FAIR (Findability, Accessibility, Interoperability, Reuse) and open science principles by assembling interested parties from research and education communities, industry, publishers, and data repositories to approach these issues jointly in a focused, efficient, and practical way. By outlining the benefits of networks, generally, and drawing on examples from efforts by the Non-Clinical Tomography Users Research Network (NoCTURN), specifically, we illustrate how standardization of data and metadata for reuse can foster interdisciplinary collaborations and create new opportunities for future-looking, large-scale data initiatives

    Dominância fiscal : uma investigação empírica sobre o caso brasileiro no período de 2003 a 2014

    Get PDF
    A estabilização econômica dos anos de 1990 e a adoção do tripé econômico, a partir de 1999, marcam o fim de um capítulo delicado da história brasileira; a partir de então, era necessária a existência de certa sintonia de políticas monetária e fiscal para a manutenção do controle dos diversos indicadores econômicos. Contudo, com essa reciprocidade na política econômica, são incitadas discussões sobre a orientação do governo na hora de definir suas prioridades nesse campo: as variáveis fiscais são priorizadas e, por conseguinte, determinadas, forçando as monetárias a se ajustarem – ou o contrário? A resposta para esse questionamento leva à discussão sobre a dominância fiscal. Assim, esse trabalho visa verificar empiricamente, usando das modelagens econométricas VAR e estudo de eventos, se há dominância fiscal ou monetária na economia brasileira e se a eficácia da política monetária mudou na transição do governo Lula para o governo Dilma. O resultado foi inconclusivo para o governo Lula e indicou dominância fiscal no governo Dilma. Ainda verificou-se não haver modificação na eficácia da política monetária.Economic stabilization, in the 1990s, and utilization of an economic tripod, after 1999, represents the end of a delicate chapter in Brazilian history. Ever since, it was necessary the existence of a certain agreement between monetary and fiscal politic, in order to maintain under control a variety of economic indicators. However, this reciprocity (in economic politic) starts discussions about the real government orientations when it comes to define its priority on this subject: are the fiscal variables priorized, and then, determined, forcing monetary variables to adjust themselves, or the opposite? The answer to these questions emerge from the fiscal dominance discussion. This paper intends to empiric verify, using econometric modeling VAR and event study, if there is fiscal dominance or monetary in Brazilian economy and whether the effectiveness of monetary politic has changed in the transition from Lula's government to the Dilma government. The result was inconclusive for the Lula government and indicated fiscal dominance in the Dilma government. There was still no change in the efficiency of the monetary politic.CAPE

    Acute inflammatory myelopathies

    Get PDF
    Inflammatory injury to the spinal cord causes a well-recognized clinical syndrome. Patients typically develop bilateral weakness, usually involving the legs, although the arms may also become affected, in association with a pattern of sensory changes that suggests a spinal cord dermatomal level. Bowel and bladder impairment is also common in many patients. Recognition of the clinical pattern of spinal cord injury should lead clinicians to perform imaging studies to evaluate for compressive etiologies. MRI of the spine is particularly useful in helping visualize intraparenchymal lesions and when these lesions enhance following contrast administration a diagnosis of myelitis is made. Cerebrospinal fluid analysis can also confirm a diagnosis of myelitis when a leukocytosis is present. There are many causes of non-compressive spinal cord injury including infectious, parainfectious, toxic, nutritional, vascular, systemic as well as idiopathic inflammatory etiologies. This review focuses on inflammatory spinal cord injury and its relationships with multiple sclerosis, neuromyelitis optica, acute disseminated encephalomyelitis and systemic collagen vascular and paraneoplastic diseases

    Localization, Concentration, and Transmission Efficiency of Banana bunchy top virus in Four Asexual Lineages of Pentalonia aphids

    Get PDF
    Banana bunchy top virus (BBTV) is the most destructive pathogenic virus of banana plants worldwide. The virus is transmitted in a circulative non-propagative manner by the banana aphid, Pentalonia nigronervosa Coquerel. In this work, we examined the localization, accumulation, and transmission efficiency of BBTV in four laboratory-established lineages of Pentalonia aphids derived from four different host plants: taro (Colocasia esculenta), heliconia (Heliconia spp.), red ginger (Alpinia purpurata), and banana (Musa sp.). Mitochondrial sequencing identified three and one lineages as Pentalonia caladii van der Goot, a recently proposed species, and P. nigronervosa, respectively. Microsatellite analysis separated the aphid lineages into four distinct genotypes. The transmission of BBTV was tested using leaf disk and whole-plant assays, both of which showed that all four lineages are competent vectors of BBTV, although the P. caladii from heliconia transmitted BBTV to the leaf disks at a significantly lower rate than did P. nigronervosa. The concentration of BBTV in dissected guts, haemolymph, and salivary glands was quantified by real-time PCR. The BBTV titer reached similar concentrations in the guts, haemolymph, and salivary glands of aphids from all four lineages tested. Furthermore, immunofluorescence assays showed that BBTV antigens localized to the anterior midguts and the principal salivary glands, demonstrating a similar pattern of translocations across the four lineages. The results reported in this study showed for the first time that P. caladii is a competent vector of BBTV
    corecore