26 research outputs found

    Obesity, Metabolic Factors and Risk of Different Histological Types of Lung Cancer: A Mendelian Randomization Study

    Get PDF
    Background: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. Methods and findings: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01–1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15–2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79–1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84–0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25–2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. Conclusions: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior

    Genetic Analysis of Lung Cancer and the Germline Impact on Somatic Mutation Burden

    Get PDF
    International audienceBackground Germline genetic variation contributes to lung cancer (LC) susceptibility. Previous genome-wide association studies (GWAS) have implicated susceptibility loci involved in smoking behaviors and DNA repair genes, but further work is required to identify susceptibility variants. Methods To identify LC susceptibility loci, a family history-based genome-wide association by proxy (GWAx) of LC (48 843 European proxy LC patients, 195 387 controls) was combined with a previous LC GWAS (29 266 patients, 56 450 controls) by meta-analysis. Colocalization was used to explore candidate genes and overlap with existing traits at discovered susceptibility loci. Polygenic risk scores (PRS) were tested within an independent validation cohort (1 666 LC patients vs 6 664 controls) using variants selected from the LC susceptibility loci and a novel selection approach using published GWAS summary statistics. Finally, the effects of the LC PRS on somatic mutational burden were explored in patients whose tumor resections have been profiled by exome (n = 685) and genome sequencing (n = 61). Statistical tests were 2-sided. Results The GWAx–GWAS meta-analysis identified 8 novel LC loci. Colocalization implicated DNA repair genes (CHEK1), metabolic genes (CYP1A1), and smoking propensity genes (CHRNA4 and CHRNB2). PRS analysis demonstrated that these variants, as well as subgenome-wide significant variants related to expression quantitative trait loci and/or smoking propensity, assisted in LC genetic risk prediction (odds ratio = 1.37, 95% confidence interval = 1.29 to 1.45; P < .001). Patients with higher genetic PRS loads of smoking-related variants tended to have higher mutation burdens in their lung tumors. Conclusions This study has expanded the number of LC susceptibility loci and provided insights into the molecular mechanisms by which these susceptibility variants contribute to LC development

    Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study.

    Get PDF
    BACKGROUND: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. METHODS AND FINDINGS: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79-1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. CONCLUSIONS: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior

    Mendelian Randomization and mediation analysis of leukocyte telomere length and risk of lung and head and neck cancers

    Get PDF
    L.K. is a fellow in the Canadian Institutes of Health Research (CIHR) Strategic Training in Advanced Genetic Epidemiology (STAGE) programme and is supported by the CIHR Doctoral Research Award from the Frederick Banting and Charles Best Canada Graduate Scholarships (GSD-137441). Transdisciplinary Research for Cancer in Lung (TRICL) of the International Lung Cancer Consortium (ILCCO) was supported by the National Institutes of Health (U19-CA148127, CA148127S1). Genotyping for the TRICL-ILCCO OncoArray was supported by in-kind genotyping at Centre for Inherited Disease Research (CIDR) (26820120008i-0–6800068-1). Genotyping for the Head and Neck Cancer OncoArray performed at CIDR was funded by the US National Institute of Dental and Craniofacial Research (NIDCR) grant 1X01HG007780–0. CAPUA study was supported by FIS-FEDER/Spain grant numbers FIS-01/310, FIS-PI03–0365 and FIS-07-BI060604, FICYT/Asturias grant numbers FICYT PB02–67 and FICYT IB09–133, and the University Institute of Oncology (IUOPA), of the University of Oviedo and the Ciber de Epidemiologia y Salud Pública. CIBERESP, SPAIN. The work performed in the CARET study was supported by the National Institute of Health (NIH)/National Cancer Institute (NCI): UM1 CA167462 (PI: Goodman), National Institute of Health UO1-CA6367307 (PIs Omen, Goodman); National Institute of Health R01 CA111703 (PI Chen), National Institute of Health 5R01 CA151989 (PI Doherty). The Liverpool Lung Project is supported by the Roy Castle Lung Cancer Foundation. The Harvard Lung Cancer Study was supported by the NIH (National Cancer Institute) grants CA092824, CA090578 and CA074386. The Multiethnic Cohort Study was partially supported by NIH Grants CA164973, CA033619, CA63464 and CA148127. The work performed in MSH-PMH study was supported by the Canadian Cancer Society Research Institute (020214), Ontario Institute of Cancer and Cancer Care Ontario Chair Award to R.J.H. and G.L. and the Alan Brown Chair and Lusi Wong Programs at the Princess Margaret Hospital Foundation. The Norway study was supported by Norwegian Cancer Society, Norwegian Research Council. The work in TLC study has been supported in part the James & Esther King Biomedical Research Program (09KN-15), National Institutes of Health Specialized Programs of Research Excellence (SPORE) Grant (P50 CA119997) and by a Cancer Center Support Grant (CCSG) at the H. Lee Moffitt Cancer Center and Research Institute, an NCI designated Comprehensive Cancer Center (grant number P30-CA76292). The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center’s BioVU, which is supported by institutional funding and by the Vanderbilt CTSA grant UL1 TR000445 from NCATS/NIH. Dr Melinda Aldrich is supported by the by NIH/National Cancer Institute 5K07CA172294. The Copenhagen General Population Study (CGPS) was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital. The NELCS study: Grant Number P20RR018787 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Kentucky Lung Cancer Research Initiative (KLCRI) was supported by the Department of Defense (Congressionally Directed Medical Research Program, U.S. Army Medical Research and Materiel Command Program) under award number: 10153006 (W81XWH-11–1-0781). Views and opinions of, and endorsements by the author(s) do not reflect those of the US Army or the Department of Defense. This research was also supported by unrestricted infrastructure funds from the UK Center for Clinical and Translational Science, NIH grant UL1TR000117 and Markey Cancer Center NCI Cancer Center Support Grant (P30 CA177558) Shared Resource Facilities: Cancer Research Informatics, Biospecimen and Tissue Procurement, and Biostatistics and Bioinformatics. The research undertaken by M.D.T., L.V.W. and M.S.A. was partly funded by the National Institute for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. M.D.T. holds a Medical Research Council Senior Clinical Fellowship (G0902313). The Tampa study was funded by Public Health Service grants P01-CA68384 and R01-DE13158 from the National Institutes of Health. The University of Pittsburgh head and neck cancer case–control study is supported by US National Institutes of Health grants P50 CA097190 and P30 CA047904. The Carolina Head and Neck Cancer Study (CHANCE) was supported by the National Cancer Institute (R01CA90731). The Head and Neck Genome Project (GENCAPO) was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; grants 04/12054–9 and 10/51168–0). The authors thank all the members of the GENCAPO team. This publication presents data from the Head and Neck 5000 study. The study was a component of independent research funded by the National Institute for Health Research (NIHR) under its Programme Grants for Applied Research scheme (RP-PG-0707–10034). The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. Human papillomavirus (HPV) serology was supported by a Cancer Research UK Programme Grant, the Integrative Cancer Epidemiology Programme (grant number: C18281/A19169). The Alcohol-Related Cancers and Genetic Susceptibility Study in Europe (ARCAGE) was funded by the European Commission’s fifth framework programme (QLK1– 2001-00182), the Italian Association for Cancer Research, Compagnia di San Paolo/FIRMS, Region Piemonte and Padova University (CPDA057222). The Rome Study was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) awards IG 2011 10491 and IG 2013 14220 to S.B. and by Fondazione Veronesi to S.B. The IARC Latin American study was funded by the European Commission INCO-DC programme (IC18-CT97–0222), with additional funding from Fondo para la Investigación Científica y Tecnológica (Argentina) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (01/01768–2). The IARC Central Europe study was supported by the European Commission’s INCO-COPERNICUS Program (IC15-CT98–0332), US NIH/National Cancer Institute grant CA92039 and World Cancer Research Foundation grant WCRF 99A28. The IARC Oral Cancer Multicenter study was funded by grant S06 96 202489 05F02 from Europe against Cancer; grants FIS 97/0024, FIS 97/0662 and BAE 01/5013 from Fondo de Investigaciones Sanitarias, Spain; the UICC Yamagiwa-Yoshida Memorial International Cancer Study; the National Cancer Institute of Canada; Associazione Italiana per la Ricerca sul Cancro; and the Pan-American Health Organization. Coordination of the EPIC study is financially supported by the European Commission (DG SANCO) and the International Agency for Research on Cancer.Peer reviewedPostprin

    Genetic Variants Related to Longer Telomere Length are Associated with Increased Risk of Renal Cell Carcinoma.

    Get PDF
    BACKGROUND: Relative telomere length in peripheral blood leukocytes has been evaluated as a potential biomarker for renal cell carcinoma (RCC) risk in several studies, with conflicting findings. OBJECTIVE: We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations. DESIGN, SETTING, AND PARTICIPANTS: Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis. RESULTS AND LIMITATIONS: Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% confidence interval [CI]:=1.70-2.53, p0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, p<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5573, OR=1.93, 95% CI=1.50-2.49, p<0.0001), papillary (N=573, OR=1.96, 95% CI=1.01-3.81, p=0.046), and chromophobe RCC (N=203, OR=2.37, 95% CI=0.78-7.17, p=0.13). CONCLUSIONS: Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk. PATIENT SUMMARY: Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and renal cell carcinoma risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing renal cell carcinoma

    The influence of obesity-related factors in the etiology of renal cell carcinoma-A mendelian randomization study.

    Get PDF
    BACKGROUND: Several obesity-related factors have been associated with renal cell carcinoma (RCC), but it is unclear which individual factors directly influence risk. We addressed this question using genetic markers as proxies for putative risk factors and evaluated their relation to RCC risk in a mendelian randomization (MR) framework. This methodology limits bias due to confounding and is not affected by reverse causation. METHODS AND FINDINGS: Genetic markers associated with obesity measures, blood pressure, lipids, type 2 diabetes, insulin, and glucose were initially identified as instrumental variables, and their association with RCC risk was subsequently evaluated in a genome-wide association study (GWAS) of 10,784 RCC patients and 20,406 control participants in a 2-sample MR framework. The effect on RCC risk was estimated by calculating odds ratios (ORSD) for a standard deviation (SD) increment in each risk factor. The MR analysis indicated that higher body mass index increases the risk of RCC (ORSD: 1.56, 95% confidence interval [CI] 1.44-1.70), with comparable results for waist-to-hip ratio (ORSD: 1.63, 95% CI 1.40-1.90) and body fat percentage (ORSD: 1.66, 95% CI 1.44-1.90). This analysis further indicated that higher fasting insulin (ORSD: 1.82, 95% CI 1.30-2.55) and diastolic blood pressure (DBP; ORSD: 1.28, 95% CI 1.11-1.47), but not systolic blood pressure (ORSD: 0.98, 95% CI 0.84-1.14), increase the risk for RCC. No association with RCC risk was seen for lipids, overall type 2 diabetes, or fasting glucose. CONCLUSIONS: This study provides novel evidence for an etiological role of insulin in RCC, as well as confirmatory evidence that obesity and DBP influence RCC risk

    Lung cancer risk attributable to occupational exposures in a multicenter case-control study in Central and Eastern Europe.

    No full text
    OBJECTIVE: To estimate the lung cancer risk attributable to occupational lung carcinogens. METHODS: Information was collected through interviews from 2624 newly diagnosed lung cancer cases and 2690 frequency-matched controls in Central and Eastern Europe. Industrial hygiene experts evaluated exposure to 70 occupational agents. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using unconditional logistic regression and attributable fractions (AF) by Miettinen's formula. RESULTS: Exposure to at least one occupational lung carcinogen resulted in an AF of 7.9% in men and 1.4% in women. Metals and silica contributed the most to the AF. The AF was highest for squamous cell carcinoma among men (11.4%) and for small cell carcinoma among women (7.1%); the effect of occupational lung carcinogens was stronger overall among current smokers. CONCLUSION: This estimation of the AF of occupational lung carcinogens is comparable to that estimated in other European studies, and cannot alone explain the high lung cancer rates in Central and Eastern Europe

    Sähköinen kirjaaminen heräämön hoitotyössä

    Get PDF
    Opinnäytetyön tarkoituksena on tehdä Nokian terveyskeskuksen leikkausosaston heräämön sairaanhoitajille kirjaamisrunko sähköiseen potilastietojärjestelmään, jonka avulla osaston sairaanhoitajat jäsentävät hoitotyön kirjaamistaan heräämöhoidon aikana. Opinnäytetyön tehtävänä on selvittää, mitkä asiat ovat olennaisia sairaanhoitajan kirjata potilaan päiväkirurgisen heräämöhoidon aikana hyvän hoidon jatkuvuuden kannalta. Tavoitteena on saada yhtenäistettyä kirjaamiskäytäntöjä kyseisessä yksikössä, sekä auttaa sairaanhoitajia kirjaamaan tehokkaasti, mutta laadukkaasti. Työ toteutettiin kirjallisuuden pohjalta, sekä työelämäyhteyttä haastatellen teemahaastattelulla ja heidän aikai-simpia materiaalejaan hyväksikäyttäen. Työssä käsitellään postoperatiivista hoitoa, päiväkirurgisen potilaan heräämöhoidon erityispiirteitä, kirjaamista sekä potilasturvallisuutta. Potilaan välitön leikkauksen jälkeinen hoito tapahtuu erityisvalvonnassa eli heräämössä, jossa päiväkirurgiset potilaat toipuvat anestesiasta ja lopulta kuntoutuvat kotikuntoisiksi. Tällöin hoitosuhde on lyhyt, ja sairaanhoitajan vuorovaikutustaidot sekä kirjaamisen merkitys korostuvat potilasturvallisuuden kannalta. Hyvä tiedonkulku on tärkeä perustekijä turvallisessa ja laadukkaassa hoidossa. Omaan tuotokselliseen lopputulokseemme valitsimme kirjauksen pääkohdiksi postoperatiivisen hoidon seitsemän tärkeintä osa-aluetta, joita sairaanhoitaja heräämöhoitotyössä seuraa. Liitimme mukaan myös päiväkirurgisen potilaan kotiutumiskriteerit, joita sairaanhoitaja voi kirjaamisen yhteydessä hyödyntää tarkistuslistan tyyppisesti.The purpose of this thesis was to create a template for electronic documentation of nursing work for nurses in the postoperative care unit in Nokia. The aim was to standardize documentation of nursing work in the unit. Information for this thesis was gathered from recent literature and by interviewing the nurses of the postoperative care unit. The theoretical section discusses postoperative nursing, day surgery, electronic nursing documentation and patient safety. Immediate postoperative care takes place in a postop-erative care unit, from where outpatients are discharged. The care outpatients receive is very short-term, thus nursing documentation and the communication skills of the nurse are very important. The seven most important points of postoperative nursing were chosen as the main titles in the template, under which the nurse can document all the important information of the care the patient has received. The discharge criteria of an outpatient was also included in the template, enabling it to simultaneously act as a checking list for the nurse responsible of the discharging
    corecore