59 research outputs found

    Role of Long Noncoding RNAs in Diabetic Complications

    Get PDF
    LncRNAs, recently found to be pervasively transcribed in the genome, can play key roles in epigenetic modifications during gene transcription. Their role in diabetic complications are however not clear. Using array analysis, we identified alterations of two lncRNAs in high glucose (25mM/L,HG) treated retinal endothelial cells (HRECs). ANRIL expressions were further measured with or without siRNA knockdown in ECs. ANRIL knockout (KO) mice with or without streptozotocin (STZ)-induced diabetes were also investigated for mRNA and protein expression of VEGF and ECM proteins FN and Col1α4. ANRIL knockdown prevented glucose-induced increased VEGF, FN and Col1α4 levels. Comparable results were observed in the retina, heart and kidneys of diabetic ANRILKO mice compared to wildtype controls. We further showed that these alterations under ANRIL’s regulation are mediated by p300 and enhancer of zeste 2 (EZH2) of the PRC2 complex. We also investigated the role of H19 in diabetes by silencing or overexpressing H19 in ECs exposed to various glucose levels. We extended our study to H19 knockout (KO) mice and vitreous samples from patients with proliferative DR. In both instances, diabetes caused downregulation of H19 expression. H19 overexpression prevented glucose-induced endothelial-mesenchymal transition (EndMT) through TGF-β in a Smad-independent pathway. Additional experiments showed a regulatory relationship between ANRIL and H19. These data suggest that glucose and diabetes cause alteration of specific lncRNAs in ECs and mouse tissues respectively. Identification of such mechanisms help in a better understanding of the pathologies in diabetes and consequent development of RNA based therapies

    MALAT1: An Epigenetic Regulator of Inflammation in Diabetic Retinopathy

    Get PDF
    Despite possessing limited protein-coding potential, long non-coding RNAs (lncRNAs) have been implicated in a myriad of pathologic conditions. Most well documented in cancer, one prominent intergenic lncRNA known as MALAT1 is notorious for its role in impacting epigenetic mechanisms. In this study, we established a novel epigenetic paradigm for MALAT in diabetic retinopathy (DR) by employing siRNA-mediated MALAT1 knockdown in human retinal endothelial cells (HRECs), a Malat1 knockout animal model, vitreous humor from diabetic patients, pharmacological inhibitors for histone and DNA methylation, RNA immunoprecipitation, western blotting, and a unique DNA methylation array to determine glucose-related alterations in MALAT1. Our findings indicated that MALAT1 is capable of impacting the expressions of inflammatory transcripts through its association with components of the PRC2 complex in diabetes. Furthermore, the vitreous humors from diabetic patients revealed increased expressions of MALAT1, TNF-α, and IL-6. Intriguingly, our DNA methylation array demonstrated that transient high glucose exposure in HRECs does not contribute to significant methylation alterations at CpG sites across the MALAT1 gene. However, global inhibition of DNA methyltransferases induced significant increases in MALAT1 and associated inflammatory transcripts in HRECs. Our findings collectively demonstrate the importance of MALAT1 in inflammation and epigenetic regulation in DR

    Detection of SARS-CoV-2-specific mucosal antibodies in saliva following concomitant COVID-19 and influenza vaccination in the ComFluCOV trial

    Get PDF
    The ComFluCOV trial randomized 679 participants to receive an age-appropriate influenza vaccine, or placebo, alongside their second COVID-19 vaccine. Concomitant administration was shown to be safe, and to preserve systemic immune responses to both vaccines. Here we report on a secondary outcome of the trial investigating SARS-CoV-2-specific mucosal antibody responses. Anti-spike IgG and IgA levels in saliva were measured with in-house ELISAs. Concomitant administration of an influenza vaccine did not affect salivary anti-spike IgG positivity rates to Pfizer/BioNTech BNT162b2 (99.1 cf. 95.6%), or AstraZeneca ChAdOx1 (67.8% cf. 64.9%), at 3-weeks post-vaccination relative to placebo. Furthermore, saliva IgG positively correlated with serum titres highlighting the potential utility of saliva for assessing differences in immunogenicity in future vaccine studies. Mucosal IgA was not detected in response to either COVID-19 vaccine, reinforcing the need for novel vaccines capable of inducing sterilising immunity or otherwise reducing transmission. The trial is registered as ISRCTN 14391248

    Young infants exhibit robust functional antibody responses and restrained IFN-γ production to SARS-CoV-2

    Get PDF
    Severe COVID-19 appears rare in children. This is unexpected, especially in young infants, who are vulnerable to severe disease caused by other respiratory viruses. We evaluate convalescent immune responses in four infants under 3 months old with confirmed COVID-19 who presented with mild febrile illness, alongside their parents, and adult controls recovered from confirmed COVID-19. Although not statistically significant, compared to seropositive adults, infants have high serum levels of IgG and IgA to SARS-CoV-2 spike protein with corresponding functional ability to block SARS-CoV-2 cellular entry. Infants also exhibit robust saliva anti-spike IgG and IgA responses. Spike-specific IFN-γ production by infant peripheral blood mononuclear cells appears restrained, but the frequency of spike-specific IFN-γ and/or TNF-ɑ producing T cells is comparable between infants and adults. On principal component analysis, infant immune responses appear distinct from their parents. Robust functional antibody responses alongside restrained IFN-γ production may help protect infants from severe COVID-19

    In Situ Loading of Basic Fibroblast Growth Factor Within Porous Silica Nanoparticles for a Prolonged Release

    Get PDF
    Basic fibroblast growth factor (bFGF), a protein, plays a key role in wound healing and blood vessel regeneration. However, bFGF is easily degraded in biologic systems. Mesoporous silica nanoparticles (MSNs) with well-tailored porous structure have been used for hosting guest molecules for drug delivery. Here, we report an in situ route to load bFGF in MSNs for a prolonged release. The average diameter (d) of bFGF-loaded MSNs is 57 ± 8 nm produced by a water-in-oil microemulsion method. The in vitro releasing profile of bFGF from MSNs in phosphate buffer saline has been monitored for 20 days through a colorimetric enzyme linked immunosorbent assay. The loading efficiency of bFGF in MSNs is estimated at 72.5 ± 3%. In addition, the cytotoxicity test indicates that the MSNs are not toxic, even at a concentration of 50 μg/mL. It is expected that the in situ loading method makes the MSNs a new delivery system to deliver protein drugs, e.g. growth factors, to help blood vessel regeneration and potentiate greater angiogenesis

    Development and evaluation of low-volume tests to detect and characterize antibodies to SARS-CoV-2

    Get PDF
    Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries

    A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

    Get PDF
    J. Kaprio, A. Palotie, A. Raevuori-Helkamaa ja S. Ripatti ovat työryhmän Eating Disorders Working Group of the Psychiatric Genomics Consortium jäseniä. Erratum in: Sci Rep. 2017 Aug 21;7(1):8379, doi: 10.1038/s41598-017-06409-3We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P = 2.04 x 10(-7); OR = 0.7; 95% confidence interval (CI) = 0.61-0.8) with independent replication (P = 0.04), suggesting a variant-mediated dysregulation of leptin signaling may play a role in AN. Multiple SNPs in LD with the variant support the nominal association. This demonstrates that although the clinical and etiologic heterogeneity of AN is universally recognized, further careful sub-typing of cases may provide more precise genomic signals. In this study, through a refinement of the phenotype spectrum of AN, we present a replicable GWAS signal that is nominally associated with AN, highlighting a potentially important candidate locus for further investigation.Peer reviewe

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore