14 research outputs found

    Diversity and dynamics of rare and of resident bacterial populations in coastal sands

    Get PDF
    Coastal sands filter and accumulate organic and inorganic materials from the terrestrial and marine environment, and thus provide a high diversity of microbial niches. Sands of temperate climate zones represent a temporally and spatially highly dynamic marine environment characterized by strong physical mixing and seasonal variation. Yet little is known about the temporal fluctuations of resident and rare members of bacterial communities in this environment. By combining community fingerprinting via pyrosequencing of ribosomal genes with the characterization of multiple environmental parameters, we disentangled the effects of seasonality, environmental heterogeneity, sediment depth and biogeochemical gradients on the fluctuations of bacterial communities of marine sands. Surprisingly, only 3–5% of all bacterial types of a given depth zone were present at all times, but 50–80% of them belonged to the most abundant types in the data set. About 60–70% of the bacterial types consisted of tag sequences occurring only once over a period of 1 year. Most members of the rare biosphere did not become abundant at any time or at any sediment depth, but varied significantly with environmental parameters associated with nutritional stress. Despite the large proportion and turnover of rare organisms, the overall community patterns were driven by deterministic relationships associated with seasonal fluctuations in key biogeochemical parameters related to primary productivity. The maintenance of major biogeochemical functions throughout the observation period suggests that the small proportion of resident bacterial types in sands perform the key biogeochemical processes, with minimal effects from the rare fraction of the communities

    Global Patterns of Bacterial Beta-Diversity in Seafloor and Seawater Ecosystems

    Get PDF
    Background Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems. Methodology/Principal Findings The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global ocean's surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities. Conclusions/Significance This first synthesis of global bacterial distribution across different ecosystems of the World's oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed

    The German National Registry of Primary Immunodeficiencies (2012-2017)

    Get PDF
    Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs. Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel. Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1–25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0–88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE- syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%—subcutaneous; 29%—intravenous; 1%—unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy. Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment

    Molecular Tools for the Detection of Nitrogen Cycling Archaea

    Get PDF
    Archaea are widespread in extreme and temperate environments, and cultured representatives cover a broad spectrum of metabolic capacities, which sets them up for potentially major roles in the biogeochemistry of their ecosystems. The detection, characterization, and quantification of archaeal functions in mixed communities require Archaea-specific primers or probes for the corresponding metabolic genes. Five pairs of degenerate primers were designed to target archaeal genes encoding key enzymes of nitrogen cycling: nitrite reductases NirA and NirB, nitrous oxide reductase (NosZ), nitrogenase reductase (NifH), and nitrate reductases NapA/NarG. Sensitivity towards their archaeal target gene, phylogenetic specificity, and gene specificity were evaluated in silico and in vitro. Owing to their moderate sensitivity/coverage, the novel nirB-targeted primers are suitable for pure culture studies only. The nirA-targeted primers showed sufficient sensitivity and phylogenetic specificity, but poor gene specificity. The primers designed for amplification of archaeal nosZ performed well in all 3 criteria; their discrimination against bacterial homologs appears to be weakened when Archaea are strongly outnumbered by bacteria in a mixed community. The novel nifH-targeted primers showed high sensitivity and gene specificity, but failed to discriminate against bacterial homologs. Despite limitations, 4 of the new primer pairs are suitable tools in several molecular methods applied in archaeal ecology

    IASLC Lung Cancer Staging Project: The New Database to Inform Revisions in the Ninth Edition of the TNM Classification of Lung Cancer

    Full text link
    In the past 20 years, the International Association for the Study of Lung Cancer (IASLC) has been working on a global project to revise the TNM classification of lung cancer. The first and second phases of the staging projects proposed recommendations for revision of the TNM classification, which were adopted by the Union for International Cancer Control and the American Joint Committee on Cancer as their seventh and eighth editions of the TNM classifications of lung cancer. For the third phase of the IASLC Staging Project, a new database of lung cancer cases diagnosed between January 2011 and December 2019 has been established. The Staging and Prognostic Factors Committee of the IASLC is in charge of the process of proposing new recommendations. The newly established database consisted of 124,581 cases. The data were obtained from Asia and Australia (56.0%), Europe (24.7%), North America (15.7%), South/Central America (3.4%), and Africa and the Middle East (0.1%). After cases with incomplete data are excluded, 87,043 cases were enrolled in the analysis, of which 52,069 (59.8%) were invasive adenocarcinoma and 15,872 (18.2%) were squamous cell carcinoma. Both clinical and pathologic stages were available in 44,831 (51.5%) cases. Analyses of this database are expected to provide proposals for changing the TNM classification toward the ninth edition, which is scheduled to be in use in January 2024. This newly established global database on lung cancer is described to provide fundamental elements for revisions of the TNM rules for staging lung cancer

    Temporal Variability of Coastal Planctomycetes Clades at Kabeltonne Station, North Sea ▿ †

    No full text
    Members of the bacterial phylum Planctomycetes are reported in marine water samples worldwide, but quantitative information is scarce. Here we investigated the phylogenetic diversity, abundance, and distribution of Planctomycetes in surface waters off the German North Sea island Helgoland during different seasons by 16S rRNA gene analysis and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). Generally Planctomycetes are more abundant in samples collected in summer and autumn than in samples collected in winter and spring. Statistical analysis revealed that Planctomycetes abundance was correlated to the Centrales diatom bloom in spring 2007. The analysis of size-fractionated seawater samples and of macroaggregates showed that ∼90% of the Planctomycetes reside in the >3-μm size fraction. Comparative sequence analysis of 184 almost full-length 16S rRNA genes revealed three dominant clades. The clades, named Planctomyces-related group A, uncultured Planctomycetes group B, and Pirellula-related group D, were monitored by CARD-FISH using newly developed oligonucleotide probes. All three clades showed recurrent abundance patterns during two annual sampling campaigns. Uncultured Planctomycetes group B was most abundant in autumn samples, while Planctomyces-related group A was present in high numbers only during late autumn and winter. The levels of Pirellula-related group D were more constant throughout the year, with elevated counts in summer. Our analyses suggest that the seasonal succession of the Planctomycetes is correlated with algal blooms. We hypothesize that the niche partitioning of the different clades might be caused by their algal substrates
    corecore