53 research outputs found

    Synthesis and characterisation of interfacial layers in organic solar cells

    Get PDF
    The quest for renewable energy sources has led to growing attention in the research of organic photovoltaics (OPVs), as a promising alternative to fossil fuels, since these devices have low manufacturing costs and attractive end-user qualities, such as ease of installation and maintenance. Wide application of OPVs is majorly limited by the devices lifetime. With the development of new encapsulation materials, some degradation factors, such as water and oxygen ingress, can almost be excluded, whereas the thermal degradation of the devices remains a major issue. Two aspects have to be addressed to solve the problem of thermal instability: bulk effects in the photoactive layer and interfacial effects at the photoactive layer/charge-transporting layers. In this work, the interface between photoactive layer and electron-transporting zinc oxide (ZnO) in devices with inverted architecture was engineered by introducing polymeric interlayers, based on zinc-binding ligands, such as 3,4-dihydroxybenzene and 8-hydroxyquinoline. Also, a cross-linkable layer of poly(3,4-dimethoxystyrene) and its fullerene derivative were studied. At first, controlled reversible addition-fragmentation chain transfer (RAFT) polymerisation was employed to achieve well-defined polymers in a range of molar masses, all bearing a chain-end functionality for further modifications. Resulting polymers have been fully characterised, including their thermal and optical properties, and introduced as interlayers to study their effect on the initial device performance and thermal stability. Poly(3,4-dihydroxystyrene) and its fullerene derivative were found unsuitable for application in devices as they increased the work function of ZnO and created a barrier for electron extraction. On the other hand, their parental polymer, poly(3,4-dimethoxystyrene), and its fullerene derivative, upon cross-linking, resulted in enhanced efficiency and stability of devices, if compared to control. Polymers based on 8-hydroxyquinoline ligand had a negative effect on the initial stability of the devices, but increased the lifetime of the cells under accelerated thermal stress. Comprehensive studies of the key mechanisms, determining efficiency, such as charge generation and extraction, were performed by using time-resolved electrical and spectroscopic techniques, in order to understand in detail the effect of the interlayers on the device performance. Obtained results allow deeper insight into mechanisms of degradation that limit the lifetime of devices and prompt the design of better materials for the interface stabilisation

    Diels–Alder cycloaddition and RAFT chain end functionality::an elegant route to fullerene end-capped polymers with control over molecular mass and architecture

    Get PDF
    Fullerene C60 functionalised polymers (FFPs) have found numerous applications from photovoltaic devices to materials for photodynamic therapy. Polymer end-capping is one way to fabricate FFPs since it provides enhanced control over the macromolecular architecture and composition. This paper reports, for the first time, a facile, metal catalyst-free approach to FFPs where polymers, generated by reversible-addition fragmentation chain transfer (RAFT) polymerisation, were coupled to a fullerene derivative through chain-end functionality, provided by the chain transfer agent without further modification. Two routes to a fullerene derivative were compared – based on the Prato reaction and Diels–Alder cycloaddition. The Diels–Alder route exclusively yielded the mono-addition product, whereas the Prato route resulted in a mixture of mono- and diadducts which required further separation. This elegant combination of well-defined RAFT polymerisation and precise Diels–Alder addition allowed one to obtain fullerene end-capped polymers within a wide range of molecular masses (from 5000 to 50 000 g mol−1)

    Design, synthesis and RAFT polymerisation of a quinoline-based monomer for use in metal-binding composite microfibres

    Get PDF
    Metal-binding polymer fibres have attracted major attention for diverse applications in membranes for metal sequestration from waste waters, non-woven wound dressings, matrices for photocatalysis, and many more. This paper reports the design and synthesis of an 8-hydroxyquinoline-based zinc-binding styrenic monomer, QuiBoc. Its subsequent polymerisation by reversible addition–fragmentation chain transfer (RAFT) yielded well-defined polymers, PQuiBoc, of controllable molar masses (6 and 12 kg mol−1) with low dispersities (Đ, Mw/Mn < 1.3). Protected (PQuiBoc) and deprotected (PQuiOH) derivatives of the polymer exhibited a high zinc-binding capacity, as determined by semi-quantitative SEM/EDXA analyses, allowing the electrospinning of microfibres from a PQuiBoc/polystyrene (PS) blend without the need for removal of the protecting group. Simple “dip-coating” of the fibrous mats into ZnO suspensions showed that PQuiBoc/PS microfibres with only 20% PQuiBoc content had almost three-fold higher loadings of ZnO (29%) in comparison to neat PS microfibres (11%)

    Minimizing geminate recombination losses in small-molecule-based organic solar cells

    Get PDF
    Small-molecule-based organic solar cells (OSCs) are a recurrent alternative to polymer-based OSCs. Due to the higher purity and definition of small molecules compared to polymers, the morphological requirements can be more relaxed. Here, we present a series of novel rhodanine-based small-molecule electron donors and blend them with the standard acceptor PC70BM. By performing a target analysis on femtosecond spectroscopy data, we quantify the rates of geminate charge recombination. We are able to reproduce these rates by applying the Marcus–Levich–Jortner equation, using results from quantum chemical calculations. This shows that in a series of differently substituted compounds, one can correctly predict trends in geminate recombination rates by relying only on quantities that are easy to measure (cyclic voltammetry, optical spectra) or that can be calculated by relatively inexpensive methods such as (TD)DFT. Our method should thus accelerate the search for high-performance small-molecule photovoltaic blends

    Insights into the influence of solvent polarity on the crystallization of poly(ethylene oxide) spin-coated thin films via in situ grazing incidence wide-angle X-ray scattering

    Get PDF
    Controlling polymer thin-film morphology and crystallinity is crucial for a wide range of applications, particularly in thin-film organic electronic devices. In this work, the crystallization behavior of a model polymer, poly(ethylene oxide) (PEO), during spin-coating is studied. PEO films were spun-cast from solvents possessing different polarities (chloroform, THF, and methanol) and probed via in situ grazing incidence wide-angle X-ray scattering. The crystallization behavior was found to follow the solvent polarity order (where chloroform chloroform > methanol). When spun-cast from nonpolar chloroform, crystallization largely followed Avrami kinetics, resulting in the formation of morphologies comprising large spherulites. PEO solutions cast from more polar solvents (THF and methanol) do not form well-defined highly crystalline morphologies and are largely amorphous with the presence of small crystalline regions. The difference in morphological development of PEO spun-cast from polar solvents is attributed to clustering phenomena that inhibit polymer crystallization. This work highlights the importance of considering individual components of polymer solubility, rather than simple total solubility, when designing processing routes for the generation of morphologies with optimum crystallinities or morphologies

    Selective molecular annealing:in situ small angle X-ray scattering study of microwave-assisted annealing of block copolymers

    Get PDF
    Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≥6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    New susceptibility loci associated with kidney disease in type 1 diabetes

    Get PDF
    WOS:000309817900008Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ∼2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2×10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0×10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-β1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1×10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.Peer reviewe
    corecore