57 research outputs found
Altered Intracellular Localization and Mobility of SBDS Protein upon Mutation in Shwachman-Diamond Syndrome
Shwachman-Diamond Syndrome (SDS) is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients
A MISSING-LINK IN THE SUPERNOVA-GRB CONNECTION: THE CASE OF SN 2012ap
Gamma Ray Bursts (GRBs) are characterized by ultra-relativistic outflows,
while supernovae are generally characterized by non-relativistic ejecta. GRB
afterglows decelerate rapidly usually within days, because their low-mass
ejecta rapidly sweep up a comparatively larger mass of circumstellar material.
However supernovae, with heavy ejecta, can be in nearly free expansion for
centuries. Supernovae were thought to have non-relativistic outflows except for
few relativistic ones accompanied by GRBs. This clear division was blurred by
SN 2009bb, the first supernova with a relativistic outflow without an observed
GRB. Yet the ejecta from SN 2009bb was baryon loaded, and in nearly-free
expansion for a year, unlike GRBs. We report the first supernova discovered
without a GRB, but with rapidly decelerating mildly relativistic ejecta, SN
2012ap. We discovered a bright and rapidly evolving radio counterpart driven by
the circumstellar interaction of the relativistic ejecta. However, we did not
find any coincident GRB with an isotropic fluence of more than a sixth of the
fluence from GRB 980425. This shows for the first time that central engines in
type Ic supernovae, even without an observed GRB, can produce both relativistic
and rapidly decelerating outflows like GRBs.Comment: 8 pages, 5 figures, 1 table, accepted for publication in Ap
Airborne DNA reveals predictable spatial and seasonal dynamics of fungi.
Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions1,2. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores3. The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms4,5
Airborne DNA reveals predictable spatial and seasonal dynamics of fungi
Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores. The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms
Broadband multi-wavelength properties of M87 during the 2017 Event Horizon Telescope campaign
In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the
center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations
for a weakly accreting supermassive black hole of mass ∼6.5 × 109Me. The EHTC also partnered with several
international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength
campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a
legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at
high energies, making it possible to combine core flux constraints with the more spatially precise very long
baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active
nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one
broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the
basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude
that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the
EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of
HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and
secondaries cannot yet be excluded.http://iopscience.iop.org/2041-8205am2022Physic
Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
Abstract: In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M ⊙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded
- …