56 research outputs found

    Particle identification in ALICE: a Bayesian approach

    Get PDF
    We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss (dE/dx\mathrm{d}E/\mathrm{d}x) and time-of-flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high-purity samples of identified particles in the decay channels KS0ππ+{\rm K}^0_S \rightarrow \pi^-\pi^+, ϕKK+\phi \rightarrow {\rm K}^-{\rm K}^+, and Λpπ\Lambda \rightarrow {\rm p}\pi^- in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected pTp_{\rm T} spectra of pions, kaons, protons, and D0^0 mesons in pp collisions at s=7\sqrt{s}=7 TeV. In all cases, the results using Bayesian PID were found to be consistent with previous measurements performed by ALICE using a standard PID approach. For the measurement of D0Kπ+^0 \rightarrow {\rm K}^-\pi^+, it was found that a Bayesian PID approach gave a higher signal-to-background ratio and a similar or larger statistical significance when compared with standard PID selections, despite a reduced identification efficiency. Finally, we present an exploratory study of the measurement of Λc+pKπ+\Lambda_{\rm c}^{+}\rightarrow {\rm p} {\rm K}^-\pi^+ in pp collisions at s=7\sqrt{s}=7 TeV, using the Bayesian approach for the identification of its decay products

    Particle identification in ALICE : a Bayesian approach

    Get PDF
    Peer reviewe

    Event-by-Event Identified Particle Ratio Fluctuations in Pb–Pb Collisions with ALICE using the Identity Method

    No full text
    The study of event-by-event fluctuations of identified hadrons may reveal the degrees of freedom of the strongly interacting matter created in heavy-ion collisions and the underlying dynamics of the system. The observable νdyn, which is defined in terms of the moments of identified-particle multiplicity distributions, is used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of particle ratios. The ALICE detector at the LHC is well-suited for the study of νdyn, due to its excellent particle identification capabilities. Particle identification based on the measurement of the specific ionisation energy loss, dE/dx, works well on a statistical basis but suffers from ambiguities when applied on an event-by-event level. A novel experimental technique called the ”Identity Method” is used to overcome such limitations. The first results on identified particle ratio fluctuations in Pb-Pb collisions at √sNN =2.76 TeV in ALICE as a function of centrality are presented. The ALICE results for the most peripheral events indicate an increasing correlation between pions and protons which is not reproduced by the HIJING and AMPT models. On the other hand, for the most central events the ALICE results agree with the extrapolations based on the data at lower energies from CERN-SPS and RHIC

    清涼飮料税論

    Get PDF
    The production of J/\).psi\) and ψ(2S)\psi(2S) was measured with the ALICE detector in Pb-Pb collisions at the LHC. The measurement was performed at forward rapidity 2.5 < y < 4 \() down to zero transverse momentum \(p_{\rm T} in the dimuon decay channel. Inclusive J/\).psi\) yields were extracted in different centrality classes and the centrality dependence of the average pTp_{\rm T} is presented. The J/\).psi\) suppression, quantified with the nuclear modification factor RAAR_{\rm AA} , was studied as a function of centrality, transverse momentum and rapidity. Comparisons with similar measurements at lower collision energy and theoretical models indicate that the J/\).psi\) production is the result of an interplay between color screening and recombination mechanisms in a deconfined partonic medium, or at its hadronization. Results on the ψ(2S)\psi(2S) suppression are provided via the ratio of ψ(2S)\psi(2S) over J/\).psi\) measured in pp and Pb-Pb collisions
    corecore