56 research outputs found

    Optimizing linkage and retention to hypertension care in rural Kenya (LARK hypertension study): study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Hypertension is the leading global risk factor for mortality. Hypertension treatment and control rates are low worldwide, and delays in seeking care are associated with increased mortality. Thus, a critical component of hypertension management is to optimize linkage and retention to care. METHODS/DESIGN: This study investigates whether community health workers, equipped with a tailored behavioral communication strategy and smartphone technology, can increase linkage and retention of hypertensive individuals to a hypertension care program and significantly reduce blood pressure among them. The study will be conducted in the Kosirai and Turbo Divisions of western Kenya. An initial phase of qualitative inquiry will assess facilitators and barriers of linkage and retention to care using a modified Health Belief Model as a conceptual framework. Subsequently, we will conduct a cluster randomized controlled trial with three arms: 1) usual care (community health workers with the standard level of hypertension care training); 2) community health workers with an additional tailored behavioral communication strategy; and 3) community health workers with a tailored behavioral communication strategy who are also equipped with smartphone technology. The co-primary outcome measures are: 1) linkage to hypertension care, and 2) one-year change in systolic blood pressure among hypertensive individuals. Cost-effectiveness analysis will be conducted in terms of costs per unit decrease in blood pressure and costs per disability-adjusted life year gained. DISCUSSION: This study will provide evidence regarding the effectiveness and cost-effectiveness of strategies to optimize linkage and retention to hypertension care that can be applicable to non-communicable disease management in low- and middle-income countries. TRIAL REGISTRATION: This trial is registered with (NCT01844596) on 30 April 2013

    Oceanographic variability in the South Pacific Convergence Zone region over the last 210 years from multi-site coral Sr/Ca records

    Get PDF
    In the South Pacific Convergence Zone (SPCZ), the variability in a sub-seasonally resolved microatoll Porites colony Sr/Ca record from Tonga and a previously published high-resolution record from Fiji are strongly influenced by sea surface temperature (SST) over the calibration period from 1981 to 2004 (R2 = 0.67–0.68). However, the Sr/Ca-derived SST correlation to instrumental SST decreases back in time. The lower frequency secular trend (~1°C) and decadal-scale (~2–3°C) modes in Sr/Ca-derived SST are almost two times larger than that observed in instrumental SST. The coral Sr/Ca records suggest that local effects on SST generate larger amplitude variability than gridded SST products indicate. Reconstructed δ ¹⁸O of seawater (δ ¹⁸Osw) at these sites correlate with instrumental sea surface salinity (SSS; r = 0.64–0.67) but not local precipitation (r = −0.10 to −0.22) demonstrating that the advection and mixing of different salinity water masses may be the predominant control on δ¹⁸Osw in this region. The Sr/Ca records indicate SST warming over the last 100 years and appears to be related to the expansion of the western Pacific warm pool (WPWP) including an increasing rate of expansion in the last ~20 years. The reconstructed δ¹⁸Osw over the last 100 years also shows surface water freshening across the SPCZ. The warming and freshening of the surface ocean in our study area suggests that the SPCZ has been shifting (expanding) southeast, possibly related to the southward shift and intensification of the South Pacific gyre over the last 50 years in response to strengthened westerly winds

    Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements

    Get PDF
    The Sr/Ca ratio of coral aragonite is used to reconstruct past sea surface temperature (SST). Twentyone laboratories took part in an interlaboratory study of coral Sr/Ca measurements. Results show interlaboratory bias can be significant, and in the extreme case could result in a range in SST estimates of 7°C. However, most of the data fall within a narrower range and the Porites coral reference material JCp- 1 is now characterized well enough to have a certified Sr/Ca value of 8.838 mmol/mol with an expanded uncertainty of 0.089 mmol/mol following International Association of Geoanalysts (IAG) guidelines. This uncertainty, at the 95% confidence level, equates to 1.5°C for SST estimates using Porites, so is approaching fitness for purpose. The comparable median within laboratory error is <0.5°C. This difference in uncertainties illustrates the interlaboratory bias component that should be reduced through the use of reference materials like the JCp-1. There are many potential sources contributing to biases in comparative methods but traces of Sr in Ca standards and uncertainties in reference solution composition can account for half of the combined uncertainty. Consensus values that fulfil the requirements to be certified values were also obtained for Mg/Ca in JCp-1 and for Sr/Ca and Mg/Ca ratios in the JCt-1 giant clam reference material. Reference values with variable fitness for purpose have also been obtained for Li/Ca, B/Ca, Ba/Ca, and U/Ca in both reference materials. In future, studies reporting coral element/Ca data should also report the average value obtained for a reference material such as the JCp-1
    corecore