870 research outputs found

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Automatically Harnessing Sparse Acceleration

    Get PDF
    Sparse linear algebra is central to many scientific programs, yet compilers fail to optimize it well. High-performance libraries are available, but adoption costs are significant. Moreover, libraries tie programs into vendor-specific software and hardware ecosystems, creating non-portable code. In this paper, we develop a new approach based on our specification Language for implementers of Linear Algebra Computations (LiLAC). Rather than requiring the application developer to (re)write every program for a given library, the burden is shifted to a one-off description by the library implementer. The LiLAC-enabled compiler uses this to insert appropriate library routines without source code changes. LiLAC provides automatic data marshaling, maintaining state between calls and minimizing data transfers. Appropriate places for library insertion are detected in compiler intermediate representation, independent of source languages. We evaluated on large-scale scientific applications written in FORTRAN; standard C/C++ and FORTRAN benchmarks; and C++ graph analytics kernels. Across heterogeneous platforms, applications and data sets we show speedups of 1.1×\times to over 10×\times without user intervention.Comment: Accepted to CC 202

    Congruence of additive and non-additive effects on gene expression estimated from pedigree and SNP data

    Get PDF
    There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted-in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects

    Fundamental Reform of Payment for Adult Primary Care: Comprehensive Payment for Comprehensive Care

    Get PDF
    Primary care is essential to the effective and efficient functioning of health care delivery systems, yet there is an impending crisis in the field due in part to a dysfunctional payment system. We present a fundamentally new model of payment for primary care, replacing encounter-based imbursement with comprehensive payment for comprehensive care. Unlike former iterations of primary care capitation (which simply bundled inadequate fee-for-service payments), our comprehensive payment model represents new investment in adult primary care, with substantial increases in payment over current levels. The comprehensive payment is directed to practices to include support for the modern systems and teams essential to the delivery of comprehensive, coordinated care. Income to primary physicians is increased commensurate with the high level of responsibility expected. To ensure optimal allocation of resources and the rewarding of desired outcomes, the comprehensive payment is needs/risk-adjusted and performance-based. Our model establishes a new social contract with the primary care community, substantially increasing payment in return for achieving important societal health system goals, including improved accessibility, quality, safety, and efficiency. Attainment of these goals should help offset and justify the costs of the investment. Field tests of this and other new models of payment for primary care are urgently needed

    The role of valuation and bargaining in optimising transboundary watercourse treaty regimes

    Get PDF
    In the face of water scarcity, growing water demands, population increase, ecosystem degradation, climate change, and so on transboundary watercourse states inevitably have to make difficult decisions on how finite quantities of water are distributed. Such waters, and their associated ecosystem services, offer multiple benefits. Valuation and bargaining can play a key role in the sharing of these ecosystems services and their associated benefits across sovereign borders. Ecosystem services in transboundary watercourses essentially constitute a portfolio of assets. Whilst challenging, their commodification, which creates property rights, supports trading. Such trading offers a means by which to resolve conflicts over competing uses and allows states to optimise their ‘portfolios’. However, despite this potential, adoption of appropriate treaty frameworks that might facilitate a market-based approach to the discovery and allocation of water-related ecosystem services at the transboundary level remains both a challenge, and a topic worthy of further study. Drawing upon concepts in law and economics, this paper therefore seeks to advance the study of how treaty frameworks might be developed in a way that supports such a market-based approach to ecosystem services and transboundary waters

    Identification of Common Genetic Variants Influencing Spontaneous Dizygotic Twinning and Female Fertility.

    Get PDF
    Spontaneous dizygotic (DZ) twinning occurs in 1%-4% of women, with familial clustering and unknown physiological pathways and genetic origin. DZ twinning might index increased fertility and has distinct health implications for mother and child. We performed a GWAS in 1,980 mothers of spontaneous DZ twins and 12,953 control subjects. Findings were replicated in a large Icelandic cohort and tested for association across a broad range of fertility traits in women. Two SNPs were identified (rs11031006 near FSHB, p = 1.54 × 10(-9), and rs17293443 in SMAD3, p = 1.57 × 10(-8)) and replicated (p = 3 × 10(-3) and p = 1.44 × 10(-4), respectively). Based on ∼90,000 births in Iceland, the risk of a mother delivering twins increased by 18% for each copy of allele rs11031006-G and 9% for rs17293443-C. A higher polygenic risk score (PRS) for DZ twinning, calculated based on the results of the DZ twinning GWAS, was significantly associated with DZ twinning in Iceland (p = 0.001). A higher PRS was also associated with having children (p = 0.01), greater lifetime parity (p = 0.03), and earlier age at first child (p = 0.02). Allele rs11031006-G was associated with higher serum FSH levels, earlier age at menarche, earlier age at first child, higher lifetime parity, lower PCOS risk, and earlier age at menopause. Conversely, rs17293443-C was associated with later age at last child. We identified robust genetic risk variants for DZ twinning: one near FSHB and a second within SMAD3, the product of which plays an important role in gonadal responsiveness to FSH. These loci contribute to crucial aspects of reproductive capacity and health.Support for the Netherlands Twin Register was obtained from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193,480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI –NL, 184.021.007); Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB; European Research Council (ERC-230374 and ERC-284167); Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1). Part of the genotyping was funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951). We acknowledge support from VU Amsterdam and the Institute for Health and Care Research (EMGO+). The Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). Dale R. Nyholt was supported by the Australian Research Council (ARC) Future Fellowship (FT0991022), NHMRC Research Fellowship (APP0613674) Schemes and by the Visiting Professors Programme (VPP) of the Royal Netherlands Academy of Arts and Sciences (KNAW). Allan F. McRae was supported by an NRMRC Career Development Fellowship (APP1083656). Grant W. Montgomery was supported by NIH grant (HD042157, a collaborative study of the genetics of DZ twinning) and NHMRC Fellowship (GNT1078399). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886), and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). We would like to thank also 23andMe's consented research participants for contributing data on age at menarche for the FSHB gene locus and the Twinning Gwas Consortium (TGC). Co-authors from: Finland (Anu Loukola, Juho Wedenoja, Emmi Tikkanen, Beenish Qaiser), Sweden (Nancy Pedersen, Andrea Ganna), United kingdom King's College London (Department of Twin Research & Genetic Epidemiology: Pirro Hysi, Massimo Mangino), Institute of Psychiatry, Psychology & Neuroscience, Medical Research Council Social, Genetic and Developmental Psychiatry Centre (Eva Krapohl, Andrew McMillan).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.ajhg.2016.03.00
    corecore