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Abstract

There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to
disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted—
in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental
effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ
or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of
genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts.
For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with
dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent
sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between
rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of
common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect
expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of
common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects.
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Introduction

Understanding the nature of genetic variation for complex

traits, including disease, is important in human medicine,

evolutionary biology and plant and animal breeding. Both the

nature of complex trait variation, including the importance of non-

additive genetic variation, and its dissection into contributions

from individual genetic loci, have been debated for a century [1–

5]. Traditionally, inference about genetic variation for complex

traits comes from the resemblance (or recurrence risk) of relatives

but more recently genotyping and sequencing technologies have

been developed that allow the attribution of genetic variation to

specific loci. Recently, the debate on genetic variation has focussed

on ‘missing heritability’ for human disease, the discrepancy

between estimates of heritability from pedigree data and the

cumulative variation explained by validated associated DNA

variants. Many explanations of missing heritability have been

proposed in the literature, including that pedigree estimates of

narrow sense heritability may be inflated due to epistatic variance

[5], causal variants not being in sufficient linkage disequilibrium

with common SNPs because they are rare [6] and effect sizes too

small to be detected with genome-wide significance [7].

Gene expression is an important complex trait because of

increasing evidence of its correlation with disease susceptibility [8–

11]. It is also an ideal model trait for genetic dissection: it can be

measured genome-wide using array or sequencing methods so for

each sample thousands of expression phenotypes can be obtained

and analysed. Almost all studies looking at genetic variation

influencing transcript levels in humans have done so using an

additive model, however, studies in several model organisms have

identified a substantial fraction of genes with non-additive or

dominance inheritance patterns [12–15]. If gene expression

variation is to be utilized more fully to inform on the biological

mechanisms leading to disease susceptibility [11], then knowledge

of the inheritance patterns and resemblance between individuals is

clearly important.
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In this study, we combine the power of pedigree and SNP-based

designs to quantify and dissect the contribution of additive and

non-additive variation using gene expression on 17,994 probes

measured on 862 individuals from 312 nuclear families (the

Brisbane Systems Genetics Study, BSGS) [16]. We find strong

evidence and consistency for prevailing additivity, but also detect

and replicate dominance variation and dominant SNP effects for a

number of probes. We detect and replicate a single over-dominant

locus where the heterozygous genotype at a SNP is associated with

increased expression at a gene that is 4MB downstream.

Results

We investigated the quantitative genetic architecture of gene

expression using two orthogonal approaches. The first involved

the decomposition of phenotypic variance using a family based

analysis. In the second, additive and non-additive SNP effects were

estimated from unrelated individuals within BSGS. We followed

up associations with replication in an independent sample (Centre

for Health Discovery and Well Being [17], CHDWB) of 139

European Americans (CHDWB_EA). By design, the estimates of

variance components from pedigree data are independent of those

using SNP associations.

Family-based analysis of genetic variation
Additive (Va) and non-additive (Vd) genetic variance components

were estimated for RNA expression levels measured at 17,994

probes on 862 individuals across 312 families in BSGS, using

restricted maximum likelihood. Of 17,994 probes that passed QC

(methods), 14,753 (82%) had narrow-sense heritability (h2) estimates

.0 (Figure 1 and Figure S1). Under the assumption of no additive

genetic variance for any probe, we would expect to observe ,9,000

probes (,50%) with estimates of Va = 0 as our estimates are

constrained to non-negative. Here we find that the proportion of

probes with h2 estimates .0 is 0.82. Therefore, accounting for

sampling variance of h2 estimates we expect the proportion of

probes that have true heritable variation is 2(0.82–0.50) = 0.64, in

concordance with other studies [18,19]. Although non-additive

variance is more difficult to detect due to higher sampling variances

and confounding with estimates of additive and shared environ-

mental variance [2,3], we find 5,798 probes (32%) have a non-zero

estimate of Vd (Figure 1 and Figure S1). The observation that greater

than 50% of probes have a zero estimate of Vd is due to the

estimation of Vd within a model that jointly estimates Va (Text S1

and Figure S2). The results for dominance are consistent with the

majority of probes not displaying dominance variation. The

conclusions from the number of non-zero estimates are also

consistent with that from employing a false discovery rate

(FDR = 0.05) approach: 11,957 (66%) of probes had an estimate

of additive variation significantly different from zero, while for only

960 (5.3%) was dominance variation significantly different from

zero (corresponding P-value thresholds, 1.3e-5 and 9.7e-6, respec-

tively) (Table 1). A small number of probes (678, or 3.7%) had both

significant additive and dominance variation. For those probes, the

additive component was much larger than the dominance

component (Figure S3). Hence, by jointly estimating additive and

dominance variation in pedigrees on ,18,000 genome-wide RNA

transcripts, we conclude that the majority of probes display genetic

variation, most of which appears additive (Figure S3).

Non-genetic familial variation
We next estimated the proportion of phenotypic variation

attributable to familial non-genetic factors (Vf). The proportion of

phenotypic variance attributed to within families was partitioned

by inclusion of a family term alongside the additive genetic

relationship term (see equation [3] in methods). In total 3,373

probes had a non-zero estimate of f 2 (Figure 1), which is consistent

with estimates from expression levels measured in skin and fat

tissue [18]. As with Vd, the high proportion of zero estimates is

likely due to the estimation of Vf jointly with Va. However, non-

zero estimates do not fully represent the true underlying level of

common family variance as a proportion of non-zero estimates are

expected by chance due to sampling error (Figure S4 and Text S2).

This is important when we consider that the expected sampling

variance of Vd and Vf are greater than Va [2,3]. Indeed, at an FDR

0.05 (corresponding to p,2.3e-7) only 17 probes (in 17 genes)

(Table S1) show a significant estimate of non-genetic familial

variation. On average, the phenotypic correlations between parent

pairs (n = 71) for probes with significant Vf were 4 standard

deviations above the mean correlation of all probes (Figure S5).

We investigated shared biological functionality among the 17

genes by performing a GO term [20] enrichment analysis using

GOEAST [21]. No GO terms were found to be significantly

enriched suggesting that common environmental effects that

influence the transcript levels act independently of a shared

biological network. A possible and likely explanation is that there

are numerous environmental effects that independently influence

the transcription of specific genes [22,23]. From these analyses we

conclude that on average, environmental factors shared by all

family members do not have a strong effect on gene expression

measured in blood samples.

Population-based analysis
We then performed a global eQTL analysis of additive and

dominance effects, associating the 17,994 expression traits with

SNP genotypes in a dataset of 339 unrelated individuals drawn

from BSGS. In total, we identify a total of 5,033 eQTL [FDR

0.05, corresponding to p,4.8e24 (cis) and p,6.2e210 (trans)] with

an additive effect across 3,364 probes (Table 1 and Table 2). The

majority (84%) of these eQTL are located in cis-regions and on

average the top eSNP (SNP with the strongest association)

Author Summary

Gene expression levels are known to influence common
disease susceptibility in humans, with GWAS significant
SNPs frequently found in regulatory regions. The expres-
sion levels of most genes are influenced by genetic
variants, often located close to the gene itself. Expression
Quantitative Trait Loci (eQTL) mapping studies have been
very successful in identifying SNPs associated with
expression levels; however, little is currently known about
the extent of additive and non-additive genetic variance
and the role of common environment on gene expression.
Here we report a comprehensive study of the sources of
genetic and non-genetic variation for gene expression
levels using both pedigree and genotype information. We
show that the majority of transcripts exhibit only additive
genetic variance with congruence from independent
methods using pedigree and genotype approaches.
However, there are a small number of probes whose
expression levels are influenced by non-additive genetic
variance. For some of these probes we identify SNPs acting
in a dominant and over-dominant manner that replicate in
an independent sample. Surprisingly, only 17 probes
exhibit significant levels of common environmental effects,
suggesting that environmental and lifestyle factors com-
mon to a family do not affect expression variation for most
transcripts, at least those measured in blood.

Additive and Non-Additive Effects on Gene Expression
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explained 11.3% of the phenotypic variance of the probe with

which it is associated. Our analysis of dominance eQTL fits a

model that includes a dominance effect (d) as well as the main

additive effect. From this analysis we identify 208 eQTL (179 cis-

acting and 29 trans-acting) that have a study-wide significant [FDR

0.05, corresponding to p,4.1e24 (cis) and p,4.7e-10 (trans)]

dominance effect, including 7 with over-dominance. Despite the

power to detect dominance-acting eQTL being considerably lower

than that to detect additive effects in SNP-trait association studies

[24], we sought to replicate the dominance eQTL in an

independent sample of 139 individuals. Of the 208 eQTL with

dominance effects, 32 replicated at p,2.4e24 = 0.05/208, the

Bonferoni threshold (Table 1). For the remaining 176 SNPs not

significant in the replication data we tested for differences in their

estimates of d from CHDWB_EA, comparing the groups of SNPs

that were +d against 2d from BSGS (Figure S6). The significant

difference between the +d and 2d groups (P = 0.0031) indicates

that these loci are enriched for dominance effects.

Of the six associations with significant over-dominance in

BSGS, we replicate the association between rs12313805

(chr12:16,523,922; hg19) and a probe in ETV6 (TSS

chr12:11,938,923; hg19), an ETS family transcription factor

(Figure 2). Individuals carrying the heterozygous genotypes (A/

G) for rs12313805 have an up-regulation of ILMN_1789596, the

probe in ETV6, compared to individuals with the two homozy-

gous genotypes that show no significant difference in expression

levels. The average fold difference between heterozygous and

homozygous individuals is 2.1 and 1.6 in BSGS and

CHDWB_EA, respectively. One possible explanation for the

observed over-dominance association is that it is caused by two

tightly linked SNPs with additive effects in opposite allelic

directions. To investigate this possibility we analysed a 10MB

imputed (against 1000 Genomes V1.3) region, +/25MB of

rs12313805, for additive and non-additive associations (Figure

S7). In this region there are no two SNPs with additive effects large

enough that should they be in opposite directions, could combine

to cause a spurious over-dominance association of the magnitude

observe here. Furthermore, we performed a haplotype analysis

using a three-SNP sliding window and looking at additive and

non-additive haplotype associations [25]. Only haplotypes whose

association models included non-additive terms showed significant

associations (Figure S7).

To characterise the network effects of large cis-eSNP we

calculated the inverse covariance matrix (V21) [26], otherwise

known as the precision matrix, of the gene expression levels for

the 17,994 probes in the dataset of unrelated individuals.

Because the normalised expression data follows a multivariate

normal distribution, element [i, j] of V21 represents the partial

correlation between probes i and j, conditional on remaining

probes. The matrix is sparse with non-zero elements repre-

senting conditional correlations between probes [27]. For the

10 probes with eSNP that explain the largest proportion of s2
a

(Table 3) (hereon termed primary probes), we extracted a list of

their conditionally correlated probes based on non-zero

elements in V21. For each of the conditionally correlated

probes we extracted their association with the eSNP for the

primary probe. On average, eSNPs were significantly associ-

ated with 64% of the conditionally correlated probes (Table 3)

(multiple testing threshold of 0.05/n, where n is the number of

conditionally correlated probes for a given primary probe).

Within the population-based eQTL analysis, these eSNPs were

significantly [P,4.8e-4 (cis) and P,6.2e-10 (trans)] associated

with their respective conditionally correlated probes in only

3% of cases, implying that in almost all cases they were not

identified as contributing to the additive genetic variance of

Figure 1. Components of variation. Distributions showing the
proportion of phenotypic variance attributable to additive genetic (h2),
non-additive genetic (d2) and common family (f2) effects. Only probes
whose estimates are greater than zero are included. The distributions
for all probes are given in Figure S1. Estimates of h2 and d2 were
obtained by fitting an model [1], whist f2 estimates were obtained from
model [3].
doi:10.1371/journal.pgen.1003502.g001

Table 1. Estimates of additive and non-additive genetic components of transcript expression levels estimated using genetically
orthogonal approaches in related and unrelated individuals.

Pedigree analysis SNP analysis on unrelated individuals

Number of probes with a significant eQTL

Variance components N Significant (FDR 0.05) Additive effect only Additive + Dominance effects Over-Dominance effect only

VA only 11,279 3,364 (1,017) 27 (4) 0

VA and VD 678 243 (68) 113 (19) 1 (0)

VD only 282 7 (1) 61 (8) 6 (1)

Significance of variance components were determined at a study-wise FDR = 0.05, corresponding top-value thresholds of 1.3e-5 and 9.7e-6 for additive and dominance
variation, respectively. The numbers of eQTL that replicate in CDHWB_EA are given in brackets.
doi:10.1371/journal.pgen.1003502.t001

Additive and Non-Additive Effects on Gene Expression
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the conditionally correlated probe (Details of conditionally

correlated probes are given in Table S2). To further evaluate

the impact of the additive effect of the eSNP on the additive

genetic variation of the conditionally correlated probes we re-

estimated the variance components but included the genotyped

eSNP as a fixed covariate in the family based analysis. The

mean reduction in h2 caused by fitting the genotypes of the

eSNP is 3.67%. If the conditional correlations were caused by

environmental correlations then we would expect no change in

the estimate of h2. These results demonstrate that a SNP with a

cis-effect on a particular probe also has trans-effects by leading

to expression variation of other probes that are within a gene

expression network. This approach also allows the identifica-

tion of links between probes that are caused by genetic effects.

This approach also allows the identification of links between

probes that are caused by genetic effects.

Congruence of pedigree and SNP inference
There is a strong relationship between narrow-sense heritability

estimated from the pedigree and the proportion of variance that is

explained by additive eSNPs that can be identified from an eQTL

association analysis (Figure 3 and Figure S8). For many transcripts

the vast majority of additive variance is accounted for by a few

loci, with the proportion of h2 explained by eSNPs greater than

80% for 721 probes (4% of total probes and 21% of probes with an

eQTL) (Figure S9). All SNPs accounting for .80% of a probe’s h2

are located within the cis-region of the transcription start site

(TSS). This is in strong contrast to a mean proportion of variance

for trans-acting eSNP of 3.2%. Such observations imply that

proximal transcription-factor binding sites involved in RNA

polymerase II recruitment and subsequent transcription are key

components of the regulatory architecture and suggest that distal-

acting elements exert a weaker influence.

The two approaches, the first a decomposition of the variance

among related individuals and the second an association analysis

of SNP genotypes in unrelated individuals, provide independent

estimation of the genetic effects influencing transcript levels. We

identified additive eQTL for 30% (3,364/11,279) of the probes

that had only a significant additive component in the pedigree

analysis, which contrasts sharply with only 2% (7/282) of additive

eQTL for probes with only significant dominance variance in the

pedigree analysis (Table 1). Conversely, 67 dominance eQTL were

identified (61 with additive and dominance effects and 6 with over-

dominance effects) and 9 replicated for 282 of the probes with just

dominance variance in the pedigree analysis, although for the

majority of these eQTL a significant additive effect was also

identified, reflecting the shared genetic covariance between

additive and dominance terms [2].

Discussion

We have used a complementary analysis of pedigree and SNP

data to partition variation for gene expression in whole blood into

components of additive, dominance and environmental variation,

and have attributed a proportion of additive and dominance

variation to specific cis and trans acting loci. The extent of non-

additive genetic variance for gene expression has been investigated

in theory [28] and empirically in plant species [14,29] and model

organisms [30–32]. This is the first, systematic investigation of

non-additive genetic variance influencing RNA transcript varia-

tion in humans.

Due to low power to estimate three variance components

jointly, we have estimated non-additive and common environ-

mental components in separate models, and show little

confounding with estimates of additive variance (Text S1 and

Figure S2). Our pedigree design did not allow the separation of

dominance variation and that due to epistatic interactions, and

our SNP analysis lacked power to detect and replicate specific

epistatic interactions. In our pedigree design, epistatic varia-

tion is partially confounded with dominance. The inference we

draw from the pedigree and SNP analyses are consistent and

although we cannot rule out variation due to epistasis, it is

unlikely to contribute a large proportion of phenotypic

variation. One possibility is that common environmental and

non-additive effects are manifesting as the additive component.

However, our strong relationship between additive variance

estimated from pedigree and SNPs data is not consistent with

this hypothesis. It is also possible but unlikely that the variance

due to common environmental factors and non-additive

genetic factors cancel each other out by chance. Thus the

most parsimonious explanation of the results is that additive

variance explains most of the observed similarity between

relatives and non-additive variance is generally of small

magnitude and cannot explain a large proportion of the

genetic (and therefore phenotypic) variance. The large-scale

additive genetic contribution to phenotypic variance is in line

with predictions from theory [4] and is important in the

context of understanding the impact of gene expression

variance on complex disease. How strong is the relationship

between the pedigree and SNP based estimates of additive

variation? For heritable probes with a significant eQTL the

relationship is very strong, with the mean proportion of the

estimate of narrow sense heritability from the pedigree

explained by SNPs of R2=h2 = 0.38 (Figure S9). For many of

these probes the identification of SNPs explaining the majority

of additive variance, located in cis-regions, provides strong

support that the underlying molecular mechanisms that

influence expression at these transcript positions can be

identified through targeted sequencing.

Significant non-additive effects are identified for a few probes;

with one particularly interesting finding of the SNP associations

showing over-dominance with probe transcript levels. As a

component of maintaining genetic variance, over-dominance has

been discussed in livestock and model species [33,34], however, in

humans, other than Sickle-Cell Anaemia, few examples of over-

dominance have been shown. Whilst the exact mechanism by

which rs12313805 acts in an over-dominant manner to influence

transcription levels in ETV6 is unknown, non-additive effects at

the gene expression level raise the possibility of the contribution of

non-additive modes of inheritance to higher order phenotypes

Table 2. eQTL identified from an additive (1df) test
(FDR = 0.05).

Conditional eQTL analysis

eQTL Second Third Fourth

N probes 3,364 1,376 217 76

Cis (+/21MB TSS) 84% 88% 84% 72%

Trans 16% 12% 21% 38%

FDR 0.05 level corresponds to P–value thresholds 4.8e-4 (cis) and 6.2e-10 (trans).
Multiple eQTL were identified from a series of consecutive conditional analyses,
up to the maximum of 4 independent eQTL.
doi:10.1371/journal.pgen.1003502.t002

Additive and Non-Additive Effects on Gene Expression
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such as disease susceptibility. If we examine the total of the

components of variation for expression of all probes, then we see

that non-genetic factors play the largest role (Figure S3). However,

there is strong evidence that for the majority of probes the extent

of genetic variation as well as the overlap of genetic effects can

differ greatly between tissues [18,19,35]. Therefore, it is likely that

the components of variation for the same probe measured in other

tissues will be different.

Despite the similar inference on mode of gene action from the

pedigree and SNP analyses, there appears to be ‘‘missing

heritability’’ for many probes (Figure 3 and Figures S8 and S9).

Missing heritability for transcript probes is likely to be due to

similar factors as that for other complex traits, where there is

increasing evidence for large numbers of common SNPs with small

effect [7,36]. For gene expression, one explanation for the

occurrence of SNPs with small effects is the impact of an eQTL

on the transcription of multiple probes across a pathway or gene

network. When we observe probes whose additive variance can

almost entirely be attributed to a single locus, what is the impact of

that SNP on the transcription of other genes involved in the same

pathway? In other words, if SNPi accounts for 90% of s2
a for

genea, and the product of genea influences transcription at geneb,

Figure 2. Association plots showing the 2log10 P-values for SNPs tested against transcript expression levels of ILMN_1789596
probe in ETV6. (a) shows the P-values for the dominance component of a 2df additive and dominance model and (b) P-values from an additive only
1df model. A genome-wide significant dominance only association is located on chromosome 12 (p12.3). The genotype-phenotype map for the top
eSNP (rs12313805) (p = 1.12e216) is given in (c). The over-dominance association was replicated (p = 2.54e29) in an independent dataset (CDHWB_EA).
(d) is the genotype-phenotype maps for rs12331805 in CDHWB_EA. The MAF for rs12313805 in BSGS and CDHWB_EA were 0.32 and 0.45,
respectively.
doi:10.1371/journal.pgen.1003502.g002

Additive and Non-Additive Effects on Gene Expression
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genec and gened , then what effect does SNPi have on geneb, genec

and gened? We have presented an approach that demonstrates a

causal genetic relationship between large cis-acting eQTL and

multiple conditionally correlated probes (Table 3). The majority of

such associations would have been missed from a conventional

eQTL mapping study due to high significance thresholds imposed

when searching for trans-associations.

In conclusion, we used a complementary pedigree and SNP-

based design and analysis to dissect phenotypic variation for gene

expression to inform on the underlying genetic architecture. We

show that whilst a small proportion of genetic variance acts in a

non-additive manner, the vast majority is additive. We also

demonstrate a genetic causal link between eQTL with large cis-

effects and secondary probes acting within a gene expression

network.

Materials and Methods

Ethics statement
All participants gave informed consent and the study protocol

was approved by the appropriate institutional review boards.

BSGS dataset
The Brisbane Systems Genetics Study (BSGS) comprises 862

Individuals of European descent from 312 independent families

[16]. Families consist of adolescent monozygotic (MZ) and

dizygotic (DZ) twins, their siblings, and their parents (Table S3).

DNA samples from each individual were genotyped on the

Illumina 610-Quad Beadchip by the Scientific Services Division at

deCODE Genetics Iceland. After standard QC filters were applied

528,509 SNPs with MAF.1% remained for further analysis. Full

details of genotyping procedures are given by Medland et al. [37].

Gene expression profiles were generated from whole blood

collected with PAXgene TM tubes (QIAGEN, Valencia, CA)

using Illumina HT12-v4.0 bead arrays. Expression levels were

corrected for batch, sex and age effects using linear models. The

Illumina HT-12 v4.0 chip contains 47,323 probes, although some

probes are not assigned to RefSeq genes. SNPs within the probe

sequence have the potential to lead to spurious associations [38].

We removed any probe which had a genotyped or imputed SNP

with MAF.0.05 located within their probe sequence (Illumina

manifest file used for probe coordinates). Non-genotyped SNPs

were determined by imputing against 1000 Genomes (V1.3; hg19)

data. After quality control to remove poorly imputed SNPs we

removed a total of 1,027 probes with SNPs in their probe

sequence. For the eQTL analysis, any probes where less than 10%

of samples had a detection P-value.0.05 were removed from the

dataset. Of the 24,317 probes retained, the mean call rate of the

proportion of samples with detection P-values, 0.05 was 97%,

implying that relatively little missing data remained within the

expression dataset. After removing 6,322 putative and/or not well-

characterised genes i.e. probe names starting with HS (n = 1,841),

KIAA (n = 158) and LOC (n = 4,323), 17,994 well-characterised

probes remained for analysis, which corresponds to 13,486 RefSeq

genes. Gene expression quantification and normalisation are

described in Powell et al. [16]. Analyses of variance components

were carried out using the full BSGS dataset of 862 individuals.

Mapping of additive and non-additive SNP associations was

conducted on a subset BSGS comprising of 339 unrelated

individuals. Including the two parents from families with parents

and children in BSGS and a randomly chosen individual from

families with no parent in BSGS formed the unrelated dataset. We

calculated the pairwise Identity-By-State (IBS) from common

SNPs (MAF.0.05) to ensure the unrelated dataset contained no

genetic relationships greater than would be expected by sampling

from an unrelated population (Figure S10) [7,39,40].

CHDWB dataset
The CHDWB study comprises of 139 Caucasian

(CHDWB_EA) healthy individuals, between the ages of 26 and

79. Gene expression profiles were generated using RNA extracted

from whole blood collected with Tempus tubes (Applied Biosys-

tems, Foster City, CA, USA) and hybridized to Illumina HT12

v3.0 bead arrays. Genotypes were measured using Illumina

OmniQuad arrays. Full details of individuals, generation of

RNA transcript abundance and genotype calling are given in

Qin et al. [17]. Gene expression levels were normalized using the

same procedures as applied to BSGS data. After quality control

filtering there were 312,151 SNPs that overlapped between BSGS

and CHDWB datasets (MAF.0.01).

Table 3. Shared additive genetic effects within a pathway of conditionally correlated probes.

Gene Probe eSNP * R2
eSNP=s2

a

N probes with
conditional
correlations

N with significant
association with
eSNP Mean change in h2 **

HLA-DRB1 ILMN_1715169 rs9271170 0.99 7 5 3.2 (%)

ERAP2 ILMN_1743145 rs10051637 0.97 5 2 0.7 (%)

MED4 ILMN_1664641 rs943067 0.98 11 7 2.1 (%)

RPS26 ILMN_2209027 rs10876864 0.98 6 4 7.3 (%)

GSTM1 ILMN_1762255 rs11101992 0.98 7 5 2.3 (%)

IRF5 ILMN_2312606 rs6965542 0.99 6 4 3.7 (%)

PAM ILMN_2313901 rs28092 0.99 6 4 5.5 (%)

ATP13A1 ILMN_2134224 rs2304130 0.97 12 9 4.3 (%)

ZSWIM7 ILMN_3298167 rs1045599 0.98 11 7 4.3 (%)

HBG2 ILMN_2084825 rs766432 0.98 16 10 3.3 (%)

*R2
eSNP is the proportion of additive variance explained by the eSNP.

**To further demonstrate a genetic causal link between probes, the eSNP from the primary probe was included as a linear covariate in the family based analysis (model
[1]). Heritability estimated from this model is conditional on the eSNP genotypes; the difference in h2 compared to the model not including the eSNP represents the

proportion of h2 accounted for by the eSNP for the conditionally correlated probes.
doi:10.1371/journal.pgen.1003502.t003
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Estimating variance components from related individuals
We fitted the following mixed linear model:

y~mzZ1azZ2dze ð1Þ

with y is an n61 vector of gene expression levels. Random additive

genetic effects a and random dominance effects d are related to y

by incidence matrices Z1 and Z2 respectably. The n61 vector e

contains the error terms. The joint distribution of all variables in

[1] is the following:

y

a

d

e

2
6664

3
7775*N

m

0

0

0

2
6664

3
7775,

V Z1As2
a Z2s2

d Is2
e

Z1As2
a As2

a 0 0

Z2s2
d 0 Ds2

d 0

Is2
e 0 0 Is2

e

2
6664

3
7775

2
6664

3
7775 ð2Þ

where V~Z1AZ1
0s2

azZ2DZ2
0s2

dzIs2
e . The matrix A (n6n) is

the additive relationship matrix and D (n6n) is the dominance

relationship matrix and I is an identity matrix. A and D are

calculated from the pedigree relationship information between

individuals. Lynch and Walsh [3] detail the calculation of A and D
given pedigree information. For each probe genetic variance

components s2
a, s2

d and s2
e , are estimated using an average

information REML algorithm [41] implemented in ASREML

[42]. Iterations were performed until the minimum variance of the

function (22logL) was less than 1e-7. The estimated variance

components are expressed as ratios of the total phenotypic

variance (s2
p) for each model: the additive variance ratio as

h2~s2
a=s2

p, i.e. the heritability, and the dominance genetic

variance ratio as d2~s2
d=s2

p. There is not enough information

contained between the relative pairs to accurately separate,

additional genetic and non-genetic variance components in [1].

In [1] it is assumed that the environmental values of different

individuals are independent and uncorrelated with genetic values

and so the model does not test for effects such as common family

Figure 3. Relationship between narrow-sense heritability estimated from the pedigree against the proportion of variance
explained by the top (smallest P-) eSNP(s) identified from the additive model eQTL analysis on unrelated individuals. The
relationship for the 3,364 probes for which we identified at least one eQTL and a significant heritability estimate is shown. (a) gives the proportion of
variance explained by one eQTL and (b) shows the combined proportion of variance explained from up to two eQTL (c) up to three eQTL and (d) up
to four eQTL. 3,364 probes had 1+ eQTL, 1,376 had 2+ eQTL, 217 had 3+ eQTL and 76 had 4 eQTL (see Table 2).
doi:10.1371/journal.pgen.1003502.g003
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environment. By fitting a model including additive genetic (a) and

family (f) effects to the expression levels of each probe we can

estimate the proportions of variance attributable to common

environment (variance due to environmental effects shared within

a family). Estimates of h2 and f2 (s2
f =s2

p) were obtained from

y~mzZ1azZ2f ze ð3Þ

where the joint distribution follows [2], with s2
f replacing s2

d and F

replacing D. Here, F (16n) is a vector containing family identifiers. For

each probe the significance of a, d and f estimates were determined by

comparing the full model to a reduced model where the relevant term

was dropped from the model (Table S4). Full and reduced models were

compared using likelihood ratio (LR) tests. From resulting P-values a

transcript-wise FDR was calculated.

Estimating SNP effects from unrelated individuals
We tested for association between the 528,509 genotyped

SNPs and the normalised expression levels of 17,994 probes

using the linear regression functions in PLINK [43]. In order

to detect independent eQTL we performed a series of

conditional regression analyses. For each probe with an

identified eQTL we corrected for the main effects of the top

eSNP (SNP with the strongest association) by regressing its

genotypes against the expression levels. Residuals from this

analysis were then used for second round of eQTL mapping,

allowing us to detect independent eQTL. If additional eQTL

were identified from this second round of analysis, the process

was repeated, correcting for the main effects of the top eSNP

from the first and second eQTL using multivariate regression.

This process was repeated until either a) no additional

significant eQTL were identified or b) four independent eQTL

had been identified. Cis-eQTLs were defined as associations

between SNPs within 1MB of either the 39 or 59 end of the

TSS. We defined trans-associations as associations involving

SNPs elsewhere in the genome. To correct for multiple testing,

we controlled the FDR [44] at 0.05: the distribution of

observed P-values was used to calculate the FDR, by

comparing it with the distribution obtained from permuting

expression phenotypes relative to genotypes 100 times. At an

FDR = 0.05 level, the significance P–value thresholds were

4.8e-4 (cis) and 6.2e-10 (trans). For probes that were included for

series of conditional analyses, the false discovery was again

controlled at 0.05 by correcting for the number of running 100

permutations where the top associations were included as

conditional main effects. In addition to testing additive effects,

we tested for associations that included a dominance compo-

nent for each SNP by probe. Associations were tested using the

–genotypic command in PLINK [43] which fits a 2 degree of

freedom joint test for both additive and dominance terms. As

described above, we controlled for multiple testing by using an

FDR of 0.05 calculated from a 1000 cycle permutation analysis

where the permuted phenotype was tested for association using

a 2 degrees of freedom model. At an FDR = 0.05 level, the

significance P–value thresholds for the dominance term

(deviation) were 4.1e-4 (cis) and 4.7e-10 (trans).

Supporting Information

Figure S1 Distributions showing the proportion of phenotypic

variance attributable to additive genetic (h2) (a), non-additive

genetic (d2) (b) and common family (f2) (c) effects. The distributions

for all probes (n = 17,994) are shown. Estimates of h2 and d2 were

obtained by fitting an ADE model, whist f2 estimates were

obtained from a ACE model.

(DOCX)

Figure S2 Relationship between the estimated variance compo-

nents under full and reduced models.

(DOCX)

Figure S3 The cumulative components of phenotypic variance

for the 17,994 probes as obtained by fitting an ADE model using

family relationship information. Probes are ordered according to

the proportion of s2
p explained by s2

a.

(DOCX)

Figure S4 Distributions of n = 17,994 variance components

estimated under a null model where the variance component is

equal 0 (see Text S2). a) additive variance (Va); b) non-additive

variance (Vd); c) common family variance (Vf).

(DOCX)

Figure S5 Distribution of the phenotypic correlations between

the parent pairs (n = 71) for the 17,994 probes. The red arrow

denotes the mean correlation of the 17 probes showing a

significant common environmental effect (Table S1).

(DOCX)

Figure S6 Estimates of the dominance effect (d) for 176 SNPs

estimated in BSGS and CHDWB_EA samples. SNPS were identified

as having a significance dominance effect in BSGS. Red denotes SNPs

that replicated at a significance threshold of p,2e-4 in CHDWB_EA.

(DOCX)

Figure S7 Analysis of the dominance association on chromo-

some 12 for ILMN_1789596. A 3-marker sliding haplotype

window parameterized for just (a) additive or (b) additive and

dominance terms. Manhattan plots additive (c) and non-additive

(d) association tests using imputed genotype data +/25MB of

rs12313805. Across this region there are no two SNPs with

additive effects large enough that should they be in opposite

directions, could combine to cause a spurious over-dominance

association of the magnitude observe here.

(DOCX)

Figure S8 Relationship between narrow-sense heritability esti-

mated from the pedigree against the proportion of variance

explained by the top (smallest p-value) eSNP(s) identified from the

additive model eQTL analysis on unrelated individuals. This

relationship for all probes (n = 17,994) is shown. (a) gives the

proportion of variance explained by one eQTL and (b) shows the

combined proportion of variance explained from up to two eQTL

(c) up to three eQTL and (d) up to four eQTL. 3,364 probes had 1

or more eQTL, 1,376 had 2 or more eQTL, 217 had 3 or more

eQTL and 76 had 4 eQTL (see main text table 2).

(DOCX)

Figure S9 Proportion of narrow-sense heritability attributable to the

top eSNPs identified from the eQTL analysis. Estimates of h2 are

determined from an Additive and non-additive genetic variance model

(see methods equation 1), applied to related individuals whilst the

proportion of variance explained by eSNPs is estimated from an

additive model applied to unrelated individuals. The x-axis shows the

proportion of additive variance of each transcript that is explained by

eSNP estimated from an independent source.

(DOCX)

Figure S10 Off-diagonal elements from a genomic relationship

matrix calculated using 501,279 genome-wide SNPs on 339

individuals.

(DOCX)
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Table S1 Information on the 17 probes that have a significant

(p,1e-4) common family effect. Variance components h2 and d2

were estimated using equation [1] (main text) and f2 using model

[3] (main text).

(DOCX)

Table S2 Primary and their conditionally correlated probes.

R2
eSNP is the variance explained by the eSNP. P-values from the

association of the eSNP with conditionally correlated probes are

given, with significant associations (multiple testing corrected for

using a Bonferroni adjustment) denoted with *. To further

demonstrate a genetic causal link between probes, the eSNP from

the primary probe was included as a linear covariate in the family

based analysis (model [1]). Heritability estimated from this model

is conditional on the eSNP genotypes; Dh2 is the difference in h2

compared to the model not including the eSNP represents the

proportion of h2 accounted for by the eSNP for the conditionally

correlated probes.

(DOCX)

Table S3 Summary statistics for the 832 individuals in BSGS.

Phenotypic correlations were calculated between pairs of individ-

uals for normalised expression levels in each of the 17,994 probes.

(DOCX)

Table S4 Full and reduced models for variance components.

(DOCX)

Text S1 Confounding between variance component estimates.

(DOCX)

Text S2 Sampling variance of variance components.

(DOCX)
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