2,019 research outputs found

    The Fractal Dimension of Projected Clouds

    Full text link
    The interstellar medium seems to have an underlying fractal structure which can be characterized through its fractal dimension. However, interstellar clouds are observed as projected two-dimensional images, and the projection of a tri-dimensional fractal distorts its measured properties. Here we use simulated fractal clouds to study the relationship between the tri-dimensional fractal dimension (D_f) of modeled clouds and the dimension resulting from their projected images. We analyze different fractal dimension estimators: the correlation and mass dimensions of the clouds, and the perimeter-based dimension of their boundaries (D_per). We find the functional forms relating D_f with the projected fractal dimensions, as well as the dependence on the image resolution, which allow to estimatethe "real" D_f value of a cloud from its projection. The application of these results to Orion A indicates in a self-consistent way that 2.5 < D_f < 2.7 for this molecular cloud, a value higher than the result D_per+1 = 2.3 some times assumed in literature for interstellar clouds.Comment: 27 pages, 13 figures, 1 table. Accepted for publication in ApJ. Minor change

    On the properties of fractal cloud complexes

    Full text link
    We study the physical properties derived from interstellar cloud complexes having a fractal structure. We first generate fractal clouds with a given fractal dimension and associate each clump with a maximum in the resulting density field. Then, we discuss the effect that different criteria for clump selection has on the derived global properties. We calculate the masses, sizes and average densities of the clumps as a function of the fractal dimension (D_f) and the fraction of the total mass in the form of clumps (epsilon). In general, clump mass does not fulfill a simple power law with size of the type M_cl ~ (R_cl)**(gamma), instead the power changes, from gamma ~ 3 at small sizes to gamma<3 at larger sizes. The number of clumps per logarithmic mass interval can be fitted to a power law N_cl ~ (M_cl)**(-alpha_M) in the range of relatively large masses, and the corresponding size distribution is N_cl ~ (R_cl)**(-alpha_R) at large sizes. When all the mass is forming clumps (epsilon=1) we obtain that as D_f increases from 2 to 3 alpha_M increases from ~0.3 to ~0.6 and alpha_R increases from ~1.0 to ~2.1. Comparison with observations suggests that D_f ~ 2.6 is roughly consistent with the average properties of the ISM. On the other hand, as the fraction of mass in clumps decreases (epsilon<1) alpha_M increases and alpha_R decreases. When only ~10% of the complex mass is in the form of dense clumps we obtain alpha_M ~ 1.2 for D_f=2.6 (not very different from the Salpeter value 1.35), suggesting this a likely link between the stellar initial mass function and the internal structure of molecular cloud complexes.Comment: 32 pages, 13 figures, 1 table. Accepted for publication in Ap

    Fractal dimension of interstellar clouds: opacity and noise effects

    Full text link
    There exists observational evidence that the interstellar medium has a fractal structure in a wide range of spatial scales. The measurement of the fractal dimension (Df) of interstellar clouds is a simple way to characterize this fractal structure, but several factors, both intrinsic to the clouds and to the observations, may contribute to affect the values obtained. In this work we study the effects that opacity and noise have on the determination of Df. We focus on two different fractal dimension estimators: the perimeter-area based dimension (Dper) and the mass-size dimension (Dm). We first use simulated fractal clouds to show that opacity does not affect the estimation of Dper. However, Dm tends to increase as opacity increases and this estimator fails when applied to optically thick regions. In addition, very noisy maps can seriously affect the estimation of both Dper and Dm, decreasing the final estimation of Df. We apply these methods to emission maps of Ophiuchus, Perseus and Orion molecular clouds in different molecular lines and we obtain that the fractal dimension is always in the range 2.6 < Df < 2.8 for these regions. These results support the idea of a relatively high (> 2.3) average fractal dimension for the interstellar medium, as traced by different chemical species.Comment: 17 pages including 6 figures and 1 table. Accepted for publication in Ap

    Ionized and neutral gas in the peculiar star/cluster complex in NGC 6946

    Get PDF
    The characteristics of ionized and HI gas in the peculiar star/cluster complex in NGC 6946, obtained with the 6-m telescope (BTA) SAO RAS, the Gemini North telescope, and the Westerbork Synthesis Radio Telescope (WSRT), are presented. The complex is unusual as hosting a super star cluster, the most massive known in an apparently non-interacting giant galaxy. It contains a number of smaller clusters and is bordered by a sharp C-shaped rim. We found that the complex is additionally unusual in having peculiar gas kinematics. The velocity field of the ionized gas reveals a deep oval minimum, ~300 pc in size, centered 7" east of the supercluster. The Vr of the ionized gas in the dip center is 100 km/s lower than in its surroundings, and emission lines within the dip appear to be shock excited. This dip is near the center of an HI hole and a semi-ring of HII regions. The HI (and less certainly, HII) velocity fields reveal expansion, with the velocity reaching ~30 km/s at a distance about 300 pc from the center of expansion, which is near the deep minimum position. The super star cluster is at the western rim of the minimum. The sharp western rim of the whole complex is plausibly a manifestation of a regular dust arc along the complex edge. Different hypotheses about the complex and the Vr depression origins are discussed, including a HVC/dark mini-halo impact, a BCD galaxy merging, and a gas outflow due to release of energy from the supercluster stars.Comment: MN RAS, accepte

    First report of Tomato torrado virus on weed hosts in Spain

    Full text link
    Alfaro Fernández, AO.; Córdoba-Sellés, C.; Cebrián, M.; Herrera-Vásquez, J.; Sanchez Navarro, JA.; Juárez, M.; Espino, A.... (2088). First report of Tomato torrado virus on weed hosts in Spain. Plant Disease. 92(5):831-831. https://doi.org/10.1094/pdis-92-5-0831b83183192

    Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope

    Get PDF
    We analyze the timing of photons observed by the MAGIC telescope during a flare of the active galactic nucleus Mkn 501 for a possible correlation with energy, as suggested by some models of quantum gravity (QG), which predict a vacuum refractive index \simeq 1 + (E/M_{QGn})^n, n = 1,2. Parametrizing the delay between gamma-rays of different energies as \Delta t =\pm\tau_l E or \Delta t =\pm\tau_q E^2, we find \tau_l=(0.030\pm0.012) s/GeV at the 2.5-sigma level, and \tau_q=(3.71\pm2.57)x10^{-6} s/GeV^2, respectively. We use these results to establish lower limits M_{QG1} > 0.21x10^{18} GeV and M_{QG2} > 0.26x10^{11} GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.Comment: 12 pages, 3 figures, Phys. Lett. B, reflects published versio

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286

    A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio
    corecore