123 research outputs found

    Study of DsJ(*) + mesons decaying to D∗ +KS0 and D*0K+ final states

    Get PDF
    A search is performed for D sJ (*) + mesons in the reactions pp → D ∗ + K S 0 X and pp → D *0 K + X using data collected at centre-of-mass energies of 7 and 8 TeV with the LHCb detector. For the D ∗ + K S 0 final state, the decays D *+ → D 0 π + with D 0 → K − π + and D 0 → K − π + π + π − are used. For D *0 K +, the decay D *0 → D 0 π 0 with D 0 → K − π + is used. A prominent D s1(2536)+ signal is observed in both D ∗ + K S 0 and D *0 K + final states. The resonances D s1 * (2700)+ and D s3 * (2860)+ are also observed, yielding information on their properties, including spin-parity assignments. The decay D s2 * (2573)+ → D ∗ + K S 0 is observed for the first time, at a significance of 6.9 σ, and its branching fraction relative to the D s2 * (2573)+ → D + K S 0 decay mode is measured

    A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

    Get PDF
    A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp → pp + Z/γ + X, in proton-tagged events from proton–proton collisions at √s = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600–1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. odelindependent upper limits on the visible production cross section of pp → pp + Z/γ + X are set

    Study of the doubly charmed tetraquark T+cc

    Get PDF
    Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed

    Search for Violations of Lorentz Invariance and CPT Symmetry in B-(s)(0) Mixing

    Get PDF
    Violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B^{0} mixing and in B_{s}^{0} mixing. Samples of B^{0}→J/ψK_{S}^{0} and B_{s}^{0}→J/ψK^{+}K^{-} decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3  fb^{-1}. No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and CPT symmetry. Results are expressed in terms of the standard model extension parameter Δa_{μ} with precisions of O(10^{-15}) and O(10^{-14})  GeV for the B^{0} and B_{s}^{0} systems, respectively. With no assumption on Lorentz (non)invariance, the CPT-violating parameter z in the B_{s}^{0} system is measured for the first time and found to be Re(z)=-0.022±0.033±0.005 and Im(z)=0.004±0.011±0.002, where the first uncertainties are statistical and the second systematic

    Observations of Lambda(0)(b) -> Lambda K+pi(-) and Lambda(0)(b) -> Lambda K+K- decays and searches for other Lambda(0)(b) and Xi(0)(b) decays to Lambda h(+)h '(-) final states

    Get PDF
    See paper for full list of authors - All figures and tables, along with any supplementary material and additional information, are available at this https URLInternational audienceA search is performed for the charmless three-body decays of the Λ0b and Ξ0b baryons to the final states Λh+h′−, where h(′)=π or K. The analysis is based on a data sample, corresponding to an integrated luminosity of 3fb−1 of pp collisions, collected by the LHCb experiment. The Λ0b→ΛK+π− and Λ0b→ΛK+K− decays are observed for the first time and their branching fractions and CP asymmetry parameters are measured. Evidence is seen for the Λ0b→Λπ+π− decay and limits are set on the branching fractions of Ξ0b baryon decays to the Λh+h′− final states

    Portable Acceleration of CMS Computing Workflows with Coprocessors as a Service

    Get PDF
    A preprint version of the article is available at: arXiv:2402.15366v2 [physics.ins-det], https://arxiv.org/abs/2402.15366 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/MLG-23-001 (CMS Public Pages). Report numbers: CMS-MLG-23-001, CERN-EP-2023-303.Data Availability: No datasets were generated or analyzed during the current study.Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors.SCOAP3. Open access funding provided by CERN (European Organization for Nuclear Research

    {Search for direct production of GeV-scale resonances decaying to a pair of muons in proton-proton collisions at s \sqrt{s} = 13 TeV}

    No full text
    A search for direct production of low-mass dimuon resonances is performed using = 13 TeV proton-proton collision data collected by the CMS experiment during the 2017–2018 operation of the CERN LHC with an integrated luminosity of 96.6 fb−1. The search exploits a dedicated high-rate trigger stream that records events with two muons with transverse momenta as low as 3 GeV but does not include the full event information. The search is performed by looking for narrow peaks in the dimuon mass spectrum in the ranges of 1.1–2.6 GeV and 4.2–7.9 GeV. No significant excess of events above the expectation from the standard model background is observed. Model-independent limits on production rates of dimuon resonances within the experimental fiducial acceptance are set. Competitive or world’s best limits are set at 90% confidence level for a minimal dark photon model and for a scenario with two Higgs doublets and an extra complex scalar singlet (2HDM+S). Values of the squared kinetic mixing coefficient ε2 in the dark photon model above 10−6 are excluded over most of the mass range of the search. In the 2HDM+S, values of the mixing angle sin(θH) above 0.08 are excluded over most of the mass range of the search with a fixed ratio of the Higgs doublets vacuum expectation tan β = 0.5
    corecore