79 research outputs found

    War and Food (In)security – A Lesson from the Russian-Ukrainian Conflict

    Get PDF
    The Russian invasion of Ukraine has implemented legitimate fears of a global crisis and further and inevitably aggravating existing food-security challenges. The international community is being called upon to take targeted action to address the rapidly-evolving, resultant scenarios, making it essential to go beyond immediate interim measures and to re-examine the agricultural and energy policies that underpin our global economy. This article, without any claim to exhaustiveness, examines the inevitable link between war and the dynamics related to food security. In the first instance, a theoretical-interpretative key of the logics of violent conflicts that generate a relevant impact on global food supplies and food (in)security is provided, within the broader framework of the dynamics related to the instability of international relations which hinder the supply of energy resources and determine the volatility of general price levels. In the concluding section, there is refl ection crossed reference to the ongoing Russia/Ukraine conflict as well as the devastating consequences on global food systems, already put under stress by the COVID-19 pandemic

    Carbon nanostructures for directional light dark matter detection

    Get PDF
    Carbon nanostructures offer exciting new possibilities in the detection of light dark matter. A darkmatter particle with mass between 1 MeV and 1 GeV scattering off an electron in the carbon wouldtransfer sufficient energy to extract the electron from the lattice. In 2D materials, such as grapheneor carbon nanotubes, these electrons would be released directly into the vacuum, avoiding theirre-absorption in the medium. We present two novel detector concepts: a ’Graphene-FET’ design,based on graphene sheets, developed at Princeton University; and a ’Dark-PMT’ based on alignedcarbon nanotubes, developed in University of Rome Sapienza. We discuss their light dark matterdiscovery potential, the status of the RD, and the recent commissioning of a state-of-the-art carbonnanotube growing facility in Rome

    Searching for Light Dark Matter with Aligned Carbon Nanotubes: The ANDROMeDa Project

    Get PDF
    The ANDROMeDa (Aligned Nanotube Detector for Research On MeV Dark matter) project aims to develop a novel Dark Matter detector based on carbon nanotubes: the “Dark-PMT”. The detector is designed to be sensitive to dark matter particles with mass between 1 MeV and 1 GeV. The detection scheme is based on dark matter-electron scattering inside a target made of vertically-aligned carbon nanotubes. Vertically-aligned carbon nanotubes have reduced density in the direction of the tube axis, therefore the scattered electrons are expected to leave the target without being re-absorbed only if their momentum has a small enough angle with that direction, which is what happens when the tubes are parallel to the dark matter wind. This grants directional sensitivity to the detector, a unique feature in this dark matter mass range

    Transmission through graphene of electrons in the 30 – 900 eV range

    Get PDF
    Here, we report on accurate transmission measurements of electrons below 1 keV through suspended monolayer graphene. Monolayer graphene was grown via chemical vapor deposition and transferred onto transmission electron microscopy (TEM) grids. A monochromatic electron gun has been employed to perform the measurements in the 30 – 900 eV range in ultra-high vacuum. The graphene transparency is obtained from the absolute measurement of the direct beam current and the transmitted one, by means of a Faraday cup. We observed a transmission going from 20 to 80% for monolayer graphene within the experimental electron energy range. The high quality and the grid coverage of the suspended graphene has been proved via micro-Raman, X-ray photoemission, electron energy loss spectroscopies and field-emission scanning electron microscopy. After a 550 °C in-vacuum annealing of the samples, the main contribution to the C 1s spectrum is due to the component and the evidence of suspended monolayer graphene has been observed through the -plasmon excitation

    Shape resonance for the anisotropic superconducting gaps near a Lifshitz transition: the effect of electron hopping between layers

    Full text link
    The multigap superconductivity modulated by quantum confinement effects in a superlattice of quantum wells is presented. Our theoretical BCS approach captures the low-energy physics of a shape resonance in the superconducting gaps when the chemical potential is tuned near a Lifshitz transition. We focus on the case of weak Cooper-pairing coupling channels and strong pair exchange interaction driven by repulsive Coulomb interaction that allows to use the BCS theory in the weak-coupling regime neglecting retardation effects like in quantum condensates of ultracold gases. The calculated matrix element effects in the pairing interaction are shown to yield a complex physics near the particular quantum critical points due to Lifshitz transitions in multigap superconductivity. Strong deviations of the ratio 2Δ/Tc2\Delta/T_c from the standard BCS value as a function of the position of the chemical potential relative to the Lifshitz transition point measured by the Lifshitz parameter are found. The response of the condensate phase to the tuning of the Lifshitz parameter is compared with the response of ultracold gases in the BCS-BEC crossover tuned by an external magnetic field. The results provide the description of the condensates in this regime where matrix element effects play a key role.Comment: 12 pages, 6 figure

    Elotuzumab plus pomalidomide and dexamethasone in relapsed/refractory multiple myeloma: a multicenter, retrospective real-world experience with 200 cases outside of controlled clinical trials

    Get PDF
    In the ELOQUENT-3 trial, the combination of elotuzumab, pomalidomide and dexamethasone (EloPd) proved a superior clinical benefit over Pd with a manageable toxicity profile, leading to its approval in relapsed/refractory multiple myeloma (RRMM), who had received at least two prior therapies, including lenalidomide and a proteasome inhibitor (PI). We report here a real-world experience of 200 RRMMs treated with EloPd in 35 Italian centers outside of clinical trials. In our dataset, the median number of prior lines of therapy was 2, with 51% of cases undergoing autologous stem cell transplant (ASCT) and 73% exposed to daratumumab. After a median follow-up of 9 months, 126 patients stopped EloPd, most of them (88.9%) because of disease progression. The overall response rate (ORR) was 55.4%, in line with the pivotal trial results. Regarding adverse events, our cohort experienced a toxicity profile similar to the ELOQUENT-3 trial, with no significant differences between younger (<70 years) and older patients. The median progression-free survival (PFS) was 7 months, shorter than that observed in the ELOQUENT-3, probably due to the different clinical characteristics of the two cohorts. Interestingly, the ISS stage III (HR:2.55) was associated with worse PFS. Finally, our series's median overall survival (OS) was shorter than that observed in the ELOQUENT-3 trial (17.5 versus 29.8 months). In conclusion, our real-world study confirms EloPd as a safe and possible therapeutic choice for RRMM who received at least two prior therapies, including lenalidomide and a PI

    Case report: Complete pathologic response with first-line immunotherapy combination in a young adult with massive liver dissemination of mismatch repair–deficient metastatic colorectal cancer: Immunological and molecular profiling

    Get PDF
    The current level of evidence for immunotherapy in previously untreated microsatellite unstable metastatic colorectal cancer is based on recent pieces of evidence of few studies that demonstrated durable response and clinical benefit, in terms of objective response rate, disease control rate, and progression-free survival in this subgroup of patients. On the basis of combinatorial immunotherapy with nivolumab plus ipilimumab, we report the exceptional case of a complete pathological response in a 21-year-old woman presenting a clinically aggressive stage IV colorectal cancer with massive nodal and liver involvement. Extensive molecular analyses based on whole genome next-generation DNA sequencing, RNA sequencing, fluorescent multiplex immunohistochemistry, and flow cytometry provided a detailed description of tumoral and immunological characteristics of this noteworthy clinical case

    The Gaia mission

    Get PDF
    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gai

    War and Food (In)security – A Lesson from the Russian-Ukrainian Conflict

    No full text
    The Russian invasion of Ukraine has implemented legitimate fears of a global crisis and further and inevitably aggravating existing food-security challenges. The international community is being called upon to take targeted action to address the rapidly-evolving, resultant scenarios, making it essential to go beyond immediate interim measures and to re-examine the agricultural and energy policies that underpin our global economy. This article, without any claim to exhaustiveness, examines the inevitable link between war and the dynamics related to food security. In the first instance, a theoretical-interpretative key of the logics of violent conflicts that generate a relevant impact on global food supplies and food (in)security is provided, within the broader framework of the dynamics related to the instability of international relations which hinder the supply of energy resources and determine the volatility of general price levels. In the concluding section, there is reflection crossed reference to the ongoing Russia/Ukraine conflict as well as the devastating consequences on global food systems, already put under stress by the COVID-19 pandemic
    corecore