164 research outputs found

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33â€Č25.29â€Čâ€Č, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49â€Č25.151â€Čâ€Č. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society

    A search of the Orion spur for continuous gravitational waves using a "loosely coherent" algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87∘6.87^\circ in diameter and centered on 20h10m54.71s+33∘33â€Č25.29"20^\textrm{h}10^\textrm{m}54.71^\textrm{s}+33^\circ33'25.29", and the other (B) is 7.45∘7.45^\circ in diameter and centered on 8h35m20.61s−46∘49â€Č25.151"8^\textrm{h}35^\textrm{m}20.61^\textrm{s}-46^\circ49'25.151". We explored the frequency range of 50-1500 Hz and frequency derivative from 00 to −5×10−9-5\times 10^{-9} Hz/s. A multi-stage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous followup parameters have winnowed initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169169 Hz we achieve our lowest 95% CL upper limit on worst-case linearly polarized strain amplitude h0h_0 of 6.3×10−256.3\times 10^{-25}, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10−243.4\times 10^{-24} for all polarizations and sky locations.Comment: Fixed minor typo - duplicate name in the author lis

    Searches for continuous gravitational waves from nine young supernova remnants

    Get PDF
    We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering F-statistic. We found no credible gravitational-wave signals. We set 95% confidence upper limits as strong (low) as 4×10−254\times10^{-25} on intrinsic strain, 2×10−72\times10^{-7} on fiducial ellipticity, and 4×10−54\times10^{-5} on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.Comment: Science summary available at http://www.ligo.org/science/Publication-S6DirectedSNR/index.ph

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data

    Get PDF
    Paper producido por "The LIGO Scientific Collaboration and the Virgo Collaboration". (En el registro se mencionan solo algunos autores de las decenas de personas que participan).Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the Universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the Universe. We carry out a search for the stochastic background with the latest data from the LIGO and Virgo detectors. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of ΩGWĂ°fÞ ÂŒ Ωαðf=frefÞα, we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5–1726 Hz. In the frequency band of 41.5–169.25 Hz for a spectral index of αŒ 0, we constrain the energy density of the stochastic background to be ΩGWĂ°fÞ <5.6 × 10−6. For the 600–1000 Hz band, ΩGWĂ°fÞ <0.14Ă°f=900 HzÞ3, a factor of 2.5 lower than the best previously reported upper limits. We find ΩGWĂ°fÞ <1.8 × 10−4 using a spectral index of zero for 170–600 Hz and ΩGWĂ°fÞ < 1.0Ă°f=1300 HzÞ3 for 1000–1726 Hz, bands in which no previous direct limits have been placed. The limits in these four bands are the lowest direct measurements to date on the stochastic background. We discuss the implications of these results in light of the recent claim by the BICEP2 experiment of the possible evidence for inflationary gravitational waves.http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.231101publishedVersionFil: Aasi, J. LIGO. California Institute of Technology; Estados Unidos de AmĂ©rica.Fil: Maglione, C. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂ­a y FĂ­sica; Argentina.Fil: Maglione, C. Argentinian Gravitational Wave Group; Argentina.Fil: Quiroga, G. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂ­a y FĂ­sica; Argentina.Fil: Quiroga, G. Argentinian Gravitational Wave Group; Argentina.FĂ­sica de PartĂ­culas y Campo

    First all-sky search for continuous gravitational waves from unknown sources in binary systems

    Full text link
    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.Comment: 16 pages, 6 figure

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10–500 s in a frequency band of 40–1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10−5 and 9.4×10−4  Mpc−3 yr−1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves
    • 

    corecore