121 research outputs found
Measurement of charm production at central rapidity in proton-proton collisions at TeV
The -differential production cross sections of the prompt (B
feed-down subtracted) charmed mesons D, D, and D in the rapidity
range , and for transverse momentum GeV/, were
measured in proton-proton collisions at TeV with the ALICE
detector at the Large Hadron Collider. The analysis exploited the hadronic
decays DK, DK, DD, and their charge conjugates, and was performed on a
nb event sample collected in 2011 with a
minimum-bias trigger. The total charm production cross section at TeV and at 7 TeV was evaluated by extrapolating to the full phase space
the -differential production cross sections at TeV
and our previous measurements at TeV. The results were compared
to existing measurements and to perturbative-QCD calculations. The fraction of
cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/307
Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at = 2.76 TeV
The yield of charged particles associated with high- trigger
particles ( GeV/) is measured with the ALICE detector in
Pb-Pb collisions at = 2.76 TeV relative to proton-proton
collisions at the same energy. The conditional per-trigger yields are extracted
from the narrow jet-like correlation peaks in azimuthal di-hadron correlations.
In the 5% most central collisions, we observe that the yield of associated
charged particles with transverse momenta GeV/ on the
away-side drops to about 60% of that observed in pp collisions, while on the
near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/350
Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev
7191/Mar294
Centrality Dependence Of The Pseudorapidity Density Distribution For Charged Particles In Pb-pb Collisions At √snn=2.76tev
7264/Mai61062
Optical characterization of nanocrystals in silicon rich oxide superlattices and porous silicon
Optical characterization of nanocrystals in silicon rich oxide superlattices and porous silicon
Upgrade of the ALICE Experiment Letter Of Intent
This Letter of Intent (LoI) presents the plans of the ALICE (A Large Ion Collider Experiment [1]) collaboration to extend its physics programme, in order to fully exploit the scientific potential of the Large Hadron Collider (LHC) for fundamental studies of QCD, with the main emphasis on heavy-ion collisions. The proposed enhancement of the ALICE detector performance will enable detailed and quantitative characterization of the high density, high temperature phase of strongly interacting matter, together with the exploration of new phenomena in QCD. In the following we outline the physics motivation for running the LHC with heavy ions at high luminosities and summarize the performance gains expected with the upgraded ALICE detector. With the proposed timeline of initiating high-rate operation after the 2018 Long Shutdown (LS2), the objectives of our upgrade plans will be achieved by collecting data into the mid-2020's
Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC
In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e. g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p-Pb and Pb-Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p-Pb collisions are found to be 5-15% larger than those in pp, while those in Pb-Pb are 35-55% larger than those in p-Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p-Pb as compared to pp collisions at similar multiplicity. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY licens
Charged kaon femtoscopic correlations in pp collisions at sqrt[s]=7 TeV
Correlations of two charged identical kaons (KchKch) are measured in pp collisions at root s = 7 TeV by the ALICE experiment at the Large Hadron Collider (LHC). One-dimensional (KKch)-K-ch correlation functions are constructed in three multiplicity and four transverse momentum ranges. The (KKch)-K-ch femtoscopic source parameters R and lambda are extracted. The (KKch)-K-ch correlations show a slight increase of femtoscopic radii with increasing multiplicity and a slight decrease of radii with increasing transverse momentum. These trends are similar to the ones observed for pi pi and K-s(0) K-s(0) correlations in pp and heavy-ion collisions. However at high multiplicities, there is an indication that the one-dimensional correlation radii for charged kaons are larger than those for pions in contrast to what was observed in heavy-ion collisions at the Relativistic Heavy-Ion Collide
- …
