2,152 research outputs found

    FLAMINGO: Calibrating large cosmological hydrodynamical simulations with machine learning

    Full text link
    To fully take advantage of the data provided by large-scale structure surveys, we need to quantify the potential impact of baryonic effects, such as feedback from active galactic nuclei (AGN) and star formation, on cosmological observables. In simulations, feedback processes originate on scales that remain unresolved. Therefore, they need to be sourced via subgrid models that contain free parameters. We use machine learning to calibrate the AGN and stellar feedback models for the FLAMINGO cosmological hydrodynamical simulations. Using Gaussian process emulators trained on Latin hypercubes of 32 smaller-volume simulations, we model how the galaxy stellar mass function and cluster gas fractions change as a function of the subgrid parameters. The emulators are then fit to observational data, allowing for the inclusion of potential observational biases. We apply our method to the three different FLAMINGO resolutions, spanning a factor of 64 in particle mass, recovering the observed relations within the respective resolved mass ranges. We also use the emulators, which link changes in subgrid parameters to changes in observables, to find models that skirt or exceed the observationally allowed range for cluster gas fractions and the stellar mass function. Our method enables us to define model variations in terms of the data that they are calibrated to rather than the values of specific subgrid parameters. This approach is useful, because subgrid parameters are typically not directly linked to particular observables, and predictions for a specific observable are influenced by multiple subgrid parameters.Comment: 24 pages, 10 figures (Including the appendix). Submitted to MNRAS. For visualisations, see the FLAMINGO website at https://flamingo.strw.leidenuniv.nl

    FLAMINGO: calibrating large cosmological hydrodynamical simulations with machine learning.

    Get PDF
    To fully take advantage of the data provided by large-scale structure surveys, we need to quantify the potential impact of baryonic effects, such as feedback from active galactic nuclei (AGN) and star formation, on cosmological observables. In simulations, feedback processes originate on scales that remain unresolved. Therefore, they need to be sourced via subgrid models that contain free parameters. We use machine learning to calibrate the AGN and stellar feedback models for the FLAMINGO (Fullhydro Large-scale structure simulations with All-sky Mapping for the Interpretation of Next Generation Observations) cosmological hydrodynamical simulations. Using Gaussian process emulators trained on Latin hypercubes of 32 smaller volume simulations, we model how the galaxy stellar mass function (SMF) and cluster gas fractions change as a function of the subgrid parameters. The emulators are then fit to observational data, allowing for the inclusion of potential observational biases. We apply our method to the three different FLAMINGO resolutions, spanning a factor of 64 in particle mass, recovering the observed relations within the respective resolved mass ranges. We also use the emulators, which link changes in subgrid parameters to changes in observables, to find models that skirt or exceed the observationally allowed range for cluster gas fractions and the SMF. Our method enables us to define model variations in terms of the data that they are calibrated to rather than the values of specific subgrid parameters. This approach is useful, because subgrid parameters are typically not directly linked to particular observables, and predictions for a specific observable are influenced by multiple subgrid parameters. [Abstract copyright: © 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.

    The FLAMINGO project: cosmological hydrodynamical simulations for large-scale structure and galaxy cluster surveys

    Get PDF
    We introduce the Virgo Consortium's FLAMINGO suite of hydrodynamical simulations for cosmology and galaxy cluster physics. To ensure the simulations are sufficiently realistic for studies of large-scale structure, the subgrid prescriptions for stellar and AGN feedback are calibrated to the observed low-redshift galaxy stellar mass function and cluster gas fractions. The calibration is performed using machine learning, separately for three resolutions. This approach enables specification of the model by the observables to which they are calibrated. The calibration accounts for a number of potential observational biases and for random errors in the observed stellar masses. The two most demanding simulations have box sizes of 1.0 and 2.8 Gpc and baryonic particle masses of 1×1081\times10^8 and 1×109M1\times10^9 \text{M}_\odot, respectively. For the latter resolution the suite includes 12 model variations in a 1 Gpc box. There are 8 variations at fixed cosmology, including shifts in the stellar mass function and/or the cluster gas fractions to which we calibrate, and two alternative implementations of AGN feedback (thermal or jets). The remaining 4 variations use the unmodified calibration data but different cosmologies, including different neutrino masses. The 2.8 Gpc simulation follows 3×10113\times10^{11} particles, making it the largest ever hydrodynamical simulation run to z=0z=0. Lightcone output is produced on-the-fly for up to 8 different observers. We investigate numerical convergence, show that the simulations reproduce the calibration data, and compare with a number of galaxy, cluster, and large-scale structure observations, finding very good agreement with the data for converged predictions. Finally, by comparing hydrodynamical and `dark-matter-only' simulations, we confirm that baryonic effects can suppress the halo mass function and the matter power spectrum by up to 20\approx20 per cent.Comment: 44 pages, 23 figures. Accepted for publication in MNRAS. V3 includes changes made in published version: jet simulations were redone to fix a bug, but the differences are nearly invisible. For visualizations, see the FLAMINGO website at https://flamingo.strw.leidenuniv.nl

    Study of exclusive one-pion and one-eta production using hadron and dielectron channels in pp reactions at kinetic beam energies of 1.25 GeV and 2.2 GeV with HADES

    Get PDF
    We present measurements of exclusive ensuremathπ+,0 and η production in pp reactions at 1.25GeV and 2.2GeV beam kinetic energy in hadron and dielectron channels. In the case of π+ and π0 , high-statistics invariant-mass and angular distributions are obtained within the HADES acceptance as well as acceptance-corrected distributions, which are compared to a resonance model. The sensitivity of the data to the yield and production angular distribution of Δ (1232) and higher-lying baryon resonances is shown, and an improved parameterization is proposed. The extracted cross-sections are of special interest in the case of pp → pp η , since controversial data exist at 2.0GeV; we find \ensuremathσ=0.142±0.022 mb. Using the dielectron channels, the π0 and η Dalitz decay signals are reconstructed with yields fully consistent with the hadronic channels. The electron invariant masses and acceptance-corrected helicity angle distributions are found in good agreement with model predictions

    Treating axial spondyloarthritis and peripheral spondyloarthritis, especially psoriatic arthritis, to target: 2017 update of recommendations by an international task force

    Get PDF
    Therapeutic targets have been defined for axial and peripheral spondyloarthritis (SpA) in 2012, but the evidence for these recommendations was only of indirect nature. These recommendations were re-evaluated in light of new insights. Based on the results of a systematic literature review and expert opinion, a task force of rheumatologists, dermatologists, patients and a health professional developed an update of the 2012 recommendations. These underwent intensive discussions, on site voting and subsequent anonymous electronic voting on levels of agreement with each item. A set of 5 overarching principles and 11 recommendations were developed and voted on. Some items were present in the previous recommendations, while others were significantly changed or newly formulated. The 2017 task force arrived at a single set of recommendations for axial and peripheral SpA, including psoriatic arthritis (PsA). The most exhaustive discussions related to whether PsA should be assessed using unidimensional composite scores for its different domains or multidimensional scores that comprise multiple domains. This question was not resolved and constitutes an important research agenda. There was broad agreement, now better supported by data than in 2012, that remission/inactive disease and, alternatively, low/minimal disease activity are the principal targets for the treatment of PsA. As instruments to assess the patients on the path to the target, the Ankylosing Spondylitis Disease Activity Score (ASDAS) for axial SpA and the Disease Activity index for PSoriatic Arthritis (DAPSA) and Minimal Disease Activity (MDA) for PsA were recommended, although not supported by all. Shared decision-making between the clinician and the patient was seen as pivotal to the process. The task force defined the treatment target for SpA as remission or low disease activity and developed a large research agenda to further advance the field

    Report of the Topical Group on Top quark physics and heavy flavor production for Snowmass 2021

    Full text link
    This report summarizes the work of the Energy Frontier Topical Group on EW Physics: Heavy flavor and top quark physics (EF03) of the 2021 Community Summer Study (Snowmass). It aims to highlight the physics potential of top-quark studies and heavy-flavor production processes (bottom and charm) at the HL-LHC and possible future hadron and lepton colliders and running scenarios

    EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats

    Get PDF
    Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment

    Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium

    Get PDF
    Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, using MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets in the ENIGMA consortium, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macro-structural asymmetry may reflect differences at the molecular, cytoarchitectonic or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia
    corecore