135 research outputs found

    Direct construction of the effective action of chiral gauge fermions in the anomalous sector

    Full text link
    The anomaly implies an obstruction to a fully chiral covariant calculation of the effective action in the abnormal parity sector of chiral theories. The standard approach then is to reconstruct the anomalous effective action from its covariant current. In this work we use a recently introduced formulation which allows to directly construct the non trivial chiral invariant part of the effective action within a fully covariant formalism. To this end we develop an appropriate version of Chan's approach to carry out the calculation within the derivative expansion. The result to four derivatives, i.e., to leading order in two and four dimensions and next-to-leading order in two dimensions, is explicitly worked out. Fairly compact expressions are found for these terms.Comment: 19 pages, revtex, no figures. Writing improved. (Refers to arXiv:0807.1696.

    Final-State Phases in Charmed Meson Two-Body Nonleptonic Decays

    Get PDF
    Observed decay rates indicate large phase differences among the amplitudes for the charge states in DKˉπD \to \bar K \pi and DKˉπD \to \bar K^* \pi but relatively real amplitudes in the charge states for DKˉρD \to \bar K \rho. This feature is traced using an SU(3) flavor analysis to a sign flip in the contribution of one of the amplitudes contributing to the latter processes in comparison with its contribution to the other two sets. This amplitude may be regarded as an effect of rescattering and is found to be of magnitude comparable to others contributing to charmed particle two-body nonleptonic decays.Comment: 19 pages, latex, 4 figures, to be submitted to Phys. Rev.

    Final-State Phases in BDπ,DπB \to D \pi, D^* \pi, and DρD \rho Decays

    Full text link
    The final-state phases in BˉDπ,Dπ\bar{B} \to D \pi, D^* \pi, and DρD \rho decays appear to follow a pattern similar to those in DKˉπD \to \bar{K} \pi, Kˉπ\bar{K}^* \pi, and Kˉρ\bar{K} \rho decays. Each set of processes is characterized by three charge states but only two independent amplitudes, so the amplitudes form triangles in the complex plane. For the first two sets the triangles appear to have non-zero area, while for the DρD \rho or Kˉρ\bar{K} \rho decays the areas of the triangles are consistent with zero. Following an earlier discussion of this behavior for DD decays, a similar analysis is performed for B decays, and the relative phases and magnitudes of contributing amplitudes are determined. The significance of recent results on \ob \to D^{(*)0} \bar{K}^{(*)0} is noted. Open theoretical and experimental questions are indicated.Comment: 16 pages, LaTeX, 3 figures, to be submitted to Phys. Rev. D. References added; comments on new experimental results and analysi

    Can supercooling explain the HBT puzzle?

    Get PDF
    Possible hadronization of supercooled QGP, created in heavy ion collisions at RHIC and SPS, is discussed within a Bjorken hydrodynamic model. Such a hadronization is expected to be a very fast shock-like process, what, if hadronization coincides or shortly followed by freeze out, could explain a part of the HBT puzzle, i.e. the flash-like particle emission (Rout/Rside1R_{out}/R_{side}\approx 1). HBT data also show that the expansion time before freeze out is very short (610fm/c\sim 6-10 fm/c). In this work we discuss question of supercooled QGP and the timescale of the reaction.Comment: 9 pages, 2 figure

    Nonresonant Three-body Decays of D and B Mesons

    Full text link
    Nonresonant three-body decays of D and B mesons are studied. It is pointed out that if heavy meson chiral perturbation theory (HMChPT) is applied to the heavy-light strong and weak vertices and assumed to be valid over the whole kinematic region, then the predicted decay rates for nonresonant charmless 3-body B decays will be too large and especially B^- --> pi^- K^+ K^- greatly exceeds the current experimental limit. This can be understood as chiral symmetry has been applied there twice beyond its region of validity. If HMChPT is applied only to the strong vertex and the weak transition is accounted for by the form factors, the dominant B^* pole contribution to the tree-dominated direct three-body B decays will become small and the branching ratio will be of order 10^{-6}. The decay modes B^- --> (K^- h^+ h^-)_{NR} and bar{B}^0 --> (bar{K}^0 h^+h^-)_{NR} for h = pi, K are penguin dominated. We apply HMChPT in two different cases to study the direct 3-body D decays and compare the results with experiment. Theoretical uncertainties are discussed.Comment: 24 pages, 2 figures. New experimental results of direct 3-body D decays as Reported at ICHEP2002 are included. To appear in Phys. Re

    Casimir energy of a compact cylinder under the condition ϵμ=c2\epsilon\mu = c^{-2}

    Full text link
    The Casimir energy of an infinite compact cylinder placed in a uniform unbounded medium is investigated under the continuity condition for the light velocity when crossing the interface. As a characteristic parameter in the problem the ratio ξ2=(ϵ1ϵ2)2/(ϵ1+ϵ2)2=(μ1μ2)2/(μ1+μ2)21\xi^2=(\epsilon_1-\epsilon_2)^2/ (\epsilon_1+\epsilon_2)^-2 = (\mu_1-\mu_2)^2/(\mu_1+ \mu_2)^2 \le 1 is used, where ϵ1\epsilon_1 and μ1\mu_1 are, respectively, the permittivity and permeability of the material making up the cylinder and ϵ2\epsilon_2 and μ2\mu_2 are those for the surrounding medium. It is shown that the expansion of the Casimir energy in powers of this parameter begins with the term proportional to ξ4\xi^4. The explicit formulas permitting us to find numerically the Casimir energy for any fixed value of ξ2\xi^2 are obtained. Unlike a compact ball with the same properties of the materials, the Casimir forces in the problem under consideration are attractive. The implication of the calculated Casimir energy in the flux tube model of confinement is briefly discussed.Comment: REVTeX, 12 pages, 1 figure in a separate fig1.eps file, 1 table; minor corrections in English and misprints; version to be published in Phys. Rev. D1

    Pion production in deeply virtual Compton scattering

    Full text link
    Using a soft pion theorem based on chiral symmetry and a Δ(1232)\Delta(1232) resonance model we propose an estimate for the production cross section of low energy pions in the deeply virtual Compton scattering (DVCS) process. In particular, we express the epeγπNe p \to e \gamma \pi N processes in terms of generalized parton distributions. We provide estimates of the contamination of the epeγpe p \to e \gamma p DVCS observables due to this associated pion production processes when the experimental data are not fully exclusive, for a set of kinematical conditions representative of present or planned experiments at JLab, HERMES and COMPASS.Comment: 50 pages, 22 figure

    Parity breaking in 2+1 dimensions and finite temperature

    Full text link
    An expansion in the number of spatial covariant derivatives is carried out to compute the ζ\zeta-function regularized effective action of 2+1-dimensional fermions at finite temperature in an arbitrary non-Abelian background. The real and imaginary parts of the Euclidean effective action are computed up to terms which are ultraviolet finite. The expansion used preserves gauge and parity symmetries and the correct multivaluation under large gauge transformations as well as the correct parity anomaly are reproduced. The result is shown to correctly reproduce known limiting cases, such as massless fermions, zero temperature, and weak fields as well as exact results for some Abelian configurations. Its connection with chiral symmetry is discussed.Comment: Extended version. RevTex, 44 page

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Leptonic and Semileptonic Decays of Charm and Bottom Hadrons

    Get PDF
    We review the experimental measurements and theoretical descriptions of leptonic and semileptonic decays of particles containing a single heavy quark, either charm or bottom. Measurements of bottom semileptonic decays are used to determine the magnitudes of two fundamental parameters of the standard model, the Cabibbo-Kobayashi-Maskawa matrix elements VcbV_{cb} and VubV_{ub}. These parameters are connected with the physics of quark flavor and mass, and they have important implications for the breakdown of CP symmetry. To extract precise values of Vcb|V_{cb}| and Vub|V_{ub}| from measurements, however, requires a good understanding of the decay dynamics. Measurements of both charm and bottom decay distributions provide information on the interactions governing these processes. The underlying weak transition in each case is relatively simple, but the strong interactions that bind the quarks into hadrons introduce complications. We also discuss new theoretical approaches, especially heavy-quark effective theory and lattice QCD, which are providing insights and predictions now being tested by experiment. An international effort at many laboratories will rapidly advance knowledge of this physics during the next decade.Comment: This review article will be published in Reviews of Modern Physics in the fall, 1995. This file contains only the abstract and the table of contents. The full 168-page document including 47 figures is available at http://charm.physics.ucsb.edu/papers/slrevtex.p
    corecore