3,002 research outputs found

    Triphen­yl(prop-2-yn-1-yl)silane

    Get PDF
    In the title compound, C21H18Si, the coordination geometry around the Si atom is a slightly distorted tetra­hedron with C—Si—C angles in the range 106.05 (11) to 110.58 (10) ° and Si–C bond lengths in the range 1.855 (2) to 1.883 (3) Å. The alkyne C—C bond length is 1.167 (4) Å. The dihedral angles between the three phenyl rings are 63.89 (7), 86.38 (7) and 70.51 (8)°. In the crystal, mol­ecules inter­act only by van der Waals forces

    Semantic web service search: a brief survey

    Full text link
    Scalable means for the search of relevant web services are essential for the development of intelligent service-based applications in the future Internet. Key idea of semantic web services is to enable such applications to perform a high-precision search and automated composition of services based on formal ontology-based representations of service semantics. In this paper, we briefly survey the state of the art of semantic web service search

    Single Bead Affinity Detection (SINBAD) for the Analysis of Protein-Protein Interactions

    Get PDF
    We present a miniaturized pull-down method for the detection of protein-protein interactions using standard affinity chromatography reagents. Binding events between different proteins, which are color-coded with quantum dots (QDs), are visualized on single affinity chromatography beads by fluorescence microscopy. The use of QDs for single molecule detection allows the simultaneous analysis of multiple protein-protein binding events and reduces the amount of time and material needed to perform a pull-down experiment

    The GALEX Ultraviolet Atlas of Nearby Galaxies

    Get PDF
    We present images, integrated photometry, surface-brightness and color profiles for a total of 1034 nearby galaxies recently observed by the GALEX satellite in its far-ultraviolet (FUV; 1516A) and near-ultraviolet (NUV; 2267A) bands. (...) This data set has been complemented with archival optical, near-infrared, and far-infrared fluxes and colors. We find that the integrated (FUV-K) color provides robust discrimination between elliptical and spiral/irregular galaxies and also among spiral galaxies of different sub-types. Elliptical galaxies with brighter K-band luminosities (i.e. more massive) are redder in (NUV-K) color but bluer in (FUV-NUV) than less massive ellipticals. In the case of the spiral/irregular galaxies our analysis shows the presence of a relatively tight correlation between the (FUV-NUV) color and the total infrared-to-UV ratio. The correlation found between (FUV-NUV) color and K-band luminosity (with lower luminosity objects being bluer than more luminous ones) can be explained as due to an increase in the dust content with galaxy luminosity. The images in this Atlas along with the profiles and integrated properties are publicly available through a dedicated web page at http://nedwww.ipac.caltech.edu/level5/GALEX_Atlas/Comment: 181 pages, 10 figures, accepted for publication in ApJS (abstract abridged

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    One single dose of etomidate negatively influences adrenocortical performance for at least 24 h in children with meningococcal sepsis

    Get PDF
    Objective: To investigate the effect of one single bolus of etomidate used for intubation on adrenal function in children with meningococcal sepsis. Design: Retrospective study conducted between 1997 and 2004. Setting: University-affiliated paediatric intensive care unit (PICU). Patients and participants: Sixty children admitted to the PICU with meningococcal sepsis, not treated with steroids. Interventions: Adrenal hormone concentrations were determined as soon as possible after PICU admission, and after 12h and 24h. To assess disease severity, PRISM score and selected laboratory parameters were determined. Measurements and main results: On admission, before blood was drawn, 23 children had been intubated with etomidate, 8 without etomidate and 29 were not intubated. Children who were intubated had significantly higher disease severity parameters than those not intubated, whereas none of these parameters significantly differed between children intubated with or without etomidate. Children who received etomidate had significantly lower cortisol, higher ACTH and higher 11-deoxycortisol levels than those who did not receive etomidate. Arterial glucose levels were significantly lower in children who were intubated with etomidate than in non-intubated children. When children were intubated with etomidate, cortisol levels were 3.2 times lower for comparable 11-deoxycortisol levels. Eight children died, seven of whom had received etomidate. Within 24h cortisol/ACTH and cortisol/11-deoxycortisol ratios increased significantly in children who received etomidate, but not in children who did not, resulting in comparable cortisol/ACTH ratios with still significantly lowered cortisol/11-deoxycortisol ratios 24h after admission. Conclusions: Our data imply that even one single bolus of etomidate negatively influences adrenal function for at least 24h. It might therefore increase risk of death

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The search for transient astrophysical neutrino emission with IceCube-DeepCore

    Get PDF
    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section
    • 

    corecore