693 research outputs found

    Three-dimensional architecture and hydrostratigraphy of cross-cutting buried valleys using airborne electromagnetics, glaciated Central Lowlands, Nebraska, USA

    Get PDF
    Buried valleys are characteristic features of glaciated landscapes, and their deposits host important aquifers worldwide. Understanding the stratigraphic architecture of these deposits is essential for protecting groundwater and interpreting sedimentary processes in subglacial and ice-marginal environments. The relationships between depositional architecture, topography and hydrostratigraphy in dissected, pre-Illinoian till sheets is poorly understood. Boreholes alone are inadequate to characterize the complex geology of buried valleys, but airborne electromagnetic surveys have proven useful for this purpose. A key question is whether the sedimentary architecture of buried valleys can be interpreted from airborne electromagnetic profiles. This study employs airborne electromagnetic resistivity profiles to interpret the threedimensional sedimentary architecture of cross-cutting buried valleys in a ca 400 km2 area along the western margin of Laurentide glaciation in North America. A progenitor bedrock valley is succeeded by at least five generations of tunnel valleys that become progressively younger northward. Tunnel-valley infills are highly variable, reflecting under-filled and over-filled conditions. Under-filled tunnel valleys are expressed on the modern landscape and contain fine sediments that act as hydraulic barriers. Over-filled tunnel valleys are not recognized in the modern landscape, but where they are present they form hydraulic windows between deep aquifer units and the land surface. The interpretation of tunnel-valley genesis herein provides evidence of the relationships between depositional processes and glacial landforms in a dissected, pre-Illinoian till sheet, and contributes to the understanding of the complex physical hydrology of glacial aquifers in general

    Reconstruction of pre-Illinoian ice margins and glaciotectonic structures from airborne electromagnetic (AEM) surveys at the western limit of Laurentide glaciation, Midcontinent U.S.A.

    Get PDF
    Early and early Middle Pleistocene glaciations in midcontinental USA are poorly understood relative to more recent Illinoian and Wisconsinan glaciations, largely because pre-Illinoian glacial landforms and deposits are eroded and buried. In this paper, we present a new interpretation of buried, pre-Illinoian glacial features along the Laurentide glacial margin in northeastern Nebraska using Airborne ElectroMagnetics (AEM) supplemented with borehole logs and 2m LiDAR elevation data. We detect and map large-scale (101–102 km) geological features using contrasts in electrical resistivity. The Laurentide glacial limit is marked by a continuous (\u3e120 km) contrast between conductive (\u3c15 Ω-m), clayey tills and resistive (\u3e40 Ω-m) sandy sediments. Several smaller (102 km2) till salients extend 10s of km westward of this margin. We recognize a lithologically heterogeneous zone characterized by variable resistivity and complex geophysical structures extending as much as 17 km west of the glacial limit. This zone is interpreted as a glaciotectonic thrust complex, and it is analogous to a similar thrust complex in Denmark where structural analysis of co-located seismic and AEM surveys provides a standard for comparison. Our study suggests that the maximum advancement of pre-Illinoian glacial ice into Nebraska involved extensive deformation of sedimentary strata, local overriding of these deformed strata by smaller ice tongues, and emplacement of tills as much as 30 km west of the principal Laurentide ice margin. These insights provide the first glimpse of the large-scale stratigraphic architecture of glacial sediments in Nebraska and point to future clarifications of the geology and geomorphology of the Laurentide glacial limit

    Three-dimensional architecture and hydrostratigraphy of cross-cutting buried valleys using airborne electromagnetics, glaciated Central Lowlands, Nebraska, USA

    Get PDF
    Buried valleys are characteristic features of glaciated landscapes, and their deposits host important aquifers worldwide. Understanding the stratigraphic architecture of these deposits is essential for protecting groundwater and interpreting sedimentary processes in subglacial and ice-marginal environments. The relationships between depositional architecture, topography and hydrostratigraphy in dissected, pre-Illinoian till sheets is poorly understood. Boreholes alone are inadequate to characterize the complex geology of buried valleys, but airborne electromagnetic surveys have proven useful for this purpose. A key question is whether the sedimentary architecture of buried valleys can be interpreted from airborne electromagnetic profiles. This study employs airborne electromagnetic resistivity profiles to interpret the threedimensional sedimentary architecture of cross-cutting buried valleys in a ca 400 km2 area along the western margin of Laurentide glaciation in North America. A progenitor bedrock valley is succeeded by at least five generations of tunnel valleys that become progressively younger northward. Tunnel-valley infills are highly variable, reflecting under-filled and over-filled conditions. Under-filled tunnel valleys are expressed on the modern landscape and contain fine sediments that act as hydraulic barriers. Over-filled tunnel valleys are not recognized in the modern landscape, but where they are present they form hydraulic windows between deep aquifer units and the land surface. The interpretation of tunnel-valley genesis herein provides evidence of the relationships between depositional processes and glacial landforms in a dissected, pre-Illinoian till sheet, and contributes to the understanding of the complex physical hydrology of glacial aquifers in general

    Airborne electromagnetic imaging of discontinuous permafrost

    Get PDF
    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to stream flow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ~1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ~4 million years and the configuration of permafrost to depths of ~100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface – groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past 1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments

    The COSMOS AGN Spectroscopic Survey I: XMM Counterparts

    Get PDF
    We present optical spectroscopy for an X-ray and optical flux-limited sample of 677 XMM-Newton selected targets covering the 2 deg^2 COSMOS field, with a yield of 485 high-confidence redshifts. The majority of the spectra were obtained over three seasons (2005-2007) with the IMACS instrument on the Magellan (Baade) telescope. We also include in the sample previously published Sloan Digital Sky Survey spectra and supplemental observations with MMT/Hectospec. We detail the observations and classification analyses. The survey is 90% complete to flux limits of f_{0.5-10 keV}>8 x 10^-16 erg cm^-2 s^-1 and i_AB+<22, where over 90% of targets have high-confidence redshifts. Making simple corrections for incompleteness due to redshift and spectral type allows for a description of the complete population to $i_AB+<23. The corrected sample includes 57% broad emission line (Type 1, unobscured) AGN at 0.13<z<4.26, 25% narrow emission line (Type 2, obscured) AGN at 0.07<z<1.29, and 18% absorption line (host-dominated, obscured) AGN at 0<z<1.22 (excluding the stars that made up 4% of the X-ray targets). We show that the survey's limits in X-ray and optical flux include nearly all X-ray AGN (defined by L_{0.5-10 keV}>3 x 10^42 erg s^-1) to z<1, of both optically obscured and unobscured types. We find statistically significant evidence that the obscured to unobscured AGN ratio at z<1 increases with redshift and decreases with luminosity.Comment: Accepted for publication in the ApJ. 31 pages, 17 figures. Table 2 is available on reques

    Plasma Dynamics

    Get PDF
    Contains table of contents for Section 2 and reports on four research projects.National Science Foundation Grant ECS-89-02990U.S. Air Force - Office of Scientific Research Grant AFOSR 89-0082-CU.S. Army - Harry Diamond Laboratories Contract DAAL02-89-K-0084U.S. Army - Harry Diamond Laboratories Contract DAAL02-92-K-0037U.S. Department of Energy Contract DE-AC02-90ER-40591U.S. Navy - Office of Naval Research Grant N00014-90-J-4130Lawrence Livermore National Laboratories Subcontract B-160456National Aeronautics and Space Administration Grant NAGW-2048National Science Foundation Grant ECS-88-22475U.S. Department of Energy Grant DE-FG02-91-ER-5410

    Plasma Dynamics

    Get PDF
    Contains table of contents for Section 2 and reports on four research projects.National Science Foundation Grant ECS 89-02990U.S. Air Force - Office of Scientific Research Grant AFOSR 89-0082-BU.S. Army - Harry Diamond Laboratories Contract DAAL02-89-K-0084U.S. Department of Energy Contract DE-AC02-90ER40591U.S. Navy - Office of Naval Research Grant N00014-90-J-4130Lawrence Livermore National Laboratory Subcontract B-160456National Science Foundation Grant ECS 88-22475U.S. Department of Energy Contract DE-FG02-91-ER-54109National Aeronautics and Space Administration Grant NAGW-2048U.S.-Israel Binational Science Foundation Grant 87-0057U.S Department of Energy Contract DE-AC02-78-ET-5101

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore