683 research outputs found

    An Assortment of Evolutionary Computation Techniques (AECT) in gaming

    Get PDF
    © 2020, Springer-Verlag London Ltd., part of Springer Nature. Real-time strategy (RTS) games differ as they persist in varying scenarios and states. These games enable an integrated correspondence of non-player characters (NPCs) to appear as an autodidact in a dynamic environment, thereby resulting in a combined attack of NPCs on human-controlled character (HCC) with maximal damage. This research aims to empower NPCs with intelligent traits. Therefore, we instigate an assortment of ant colony optimization (ACO) with genetic algorithm (GA)-based approach to first-person shooter (FPS) game, i.e., Zombies Redemption (ZR). Eminent NPCs with best-fit genes are elected to spawn NPCs over generations and game levels as yielded by GA. Moreover, NPCs empower ACO to elect an optimal path with diverse incentives and less likelihood of getting shot. The proposed technique ZR is novel as it integrates ACO and GA in FPS games where NPC will use ACO to exploit and optimize its current strategy. GA will be used to share and explore strategy among NPCs. Moreover, it involves an elaboration of the mechanism of evolution through parameter utilization and updation over the generations. ZR is played by 450 players with varying levels having the evolving traits of NPCs and environmental constraints in order to accumulate experimental results. Results revealed improvement in NPCs performance as the game proceeds

    Label-free detection of dissolved carbon dioxide utilizing multimode tapered optical fiber coated zinc oxide nanorice

    Get PDF
    A label-free detection for dissolved carbon dioxide (dCO 2 ) is developed using a tapered optical fiber sensor. The tapered region of the optical fiber is coated with the zinc oxide (ZnO) nanorice and used as a probe for dCO 2 sensing. The sensor probe was exposed to different concentrations of dCO 2 solution ranging from 10 to 100 ppm. ZnO nanorice can adsorb dCO 2 via strong hydrogen bonding due to the presence of plenty of oxygen atoms on its surface layer. The interaction between ZnO nanorice and dCO 2 changes the optical properties of the ZnO nanorice layer, resulting in the change in reflectance. From the experiment, the result shows that there is an improvement in the sensitivity of the sensor when higher concentration was used. A broad linear trend ranging from 0 to 60 ppm ( R2=0.972 ) is observed for the sensor probe that is coated with 1.0 M of ZnO nanorice compared with the 0.1 M and 0.5 M ZnO nanorice concentrations. The sensor sensitivity obtained is 0.008 mW/ppm. The sensor demonstrates a response and recovery time of 0.47 and 1.70 min, respectively. Good repeatability is obtained with the standard deviation in the range of 0.008–0.027. The average resolution calculated for this sensor is 4.595 ppm

    The type VII secretion system of <i>Staphylococcus aureus</i> secretes a nuclease toxin that targets competitor bacteria

    Get PDF
    The type VII protein secretion system (T7SS) plays a critical role in the virulence of human pathogens including Mycobacterium tuberculosis and Staphylococcus aureus. Here we report that the S. aureus T7SS secretes a large nuclease toxin, EsaD. The toxic activity of EsaD is neutralised during its biosynthesis through complex formation with an antitoxin, EsaG, which binds to its C-terminal nuclease domain. The secretion of EsaD is dependent upon a further accessory protein, EsaE, that does not interact with the nuclease domain, but instead binds to the EsaD N-terminal region. EsaE has a dual cytoplasmic/membrane localization and membrane-bound EsaE interacts with the T7SS secretion ATPase, EssC, implicating EsaE in targeting the EsaDG complex to the secretion apparatus. EsaD and EsaE are co-secreted whereas EsaG is found only in the cytoplasm and may be stripped off during the secretion process. Strain variants of S. aureus that lack esaD encode at least two copies of EsaG-like proteins most likely to protect themselves from the toxic activity of EsaD secreted by esaD(+) strains. In support of this, a strain overproducing EsaD elicits significant growth inhibition against a sensitive strain. We conclude that T7SSs may play unexpected and key roles in bacterial competitiveness

    A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms

    Full text link
    The Constrained Minimal Supersymmetric Standard Model (CMSSM) is one of the simplest and most widely-studied supersymmetric extensions to the standard model of particle physics. Nevertheless, current data do not sufficiently constrain the model parameters in a way completely independent of priors, statistical measures and scanning techniques. We present a new technique for scanning supersymmetric parameter spaces, optimised for frequentist profile likelihood analyses and based on Genetic Algorithms. We apply this technique to the CMSSM, taking into account existing collider and cosmological data in our global fit. We compare our method to the MultiNest algorithm, an efficient Bayesian technique, paying particular attention to the best-fit points and implications for particle masses at the LHC and dark matter searches. Our global best-fit point lies in the focus point region. We find many high-likelihood points in both the stau co-annihilation and focus point regions, including a previously neglected section of the co-annihilation region at large m_0. We show that there are many high-likelihood points in the CMSSM parameter space commonly missed by existing scanning techniques, especially at high masses. This has a significant influence on the derived confidence regions for parameters and observables, and can dramatically change the entire statistical inference of such scans.Comment: 47 pages, 8 figures; Fig. 8, Table 7 and more discussions added to Sec. 3.4.2 in response to referee's comments; accepted for publication in JHE

    Reflectance response of tapered optical fiber coated with graphene oxide nanostructured thin film for aqueous ethanol sensing

    Get PDF
    In this work, optical sensing performance of tapered multimode fiber tip coated with graphene oxide (GO) nanostructured thin film towards aqueous ethanol with different concentrations is investigated. The tapering process of the optical fiber is done by a glass processing machine. The multimode optical fiber tip is dip-coated with GO and annealed at 70 °C to enhance the binding of the nanomaterials to the silica fiber. FESEM, Raman microscopy and XRD analyses are performed to micro-characterize the GO thin films. The morphology of the GO is observed to be in sheets forms. The reflectance response of the GO coated fiber tip is compared with the uncoated tip. The measurements are taken using a spectrophotometer in the optical wavelength range of 550–720 nm. The reflectance response of the GO coated fiber tip reduced proportionally, upon exposure to ethanol with concentration range of 5–80%. The dynamic response of the developed sensor showed strong reversibility and repeatability when it is exposed to ethanol with concentrations of 5%, 20% and 40% in distilled water. At room temperature, the sensor shows fast response and recovery as low as 19 and 25 s, respectively

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan ÎČ < 40

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Zâ€Č gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/Îł bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the ÎŒ + ÎŒ −channel. A Z â€Č boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Zâ€Č Models
    • 

    corecore