47 research outputs found

    Frail young adult cancer survivors experience poor health-related quality of life

    Get PDF
    Background: Young adult cancer survivors experience frailty and decreased muscle mass at rates equivalent to much older noncancer populations, which indicate accelerated aging. Although frailty and low muscle mass can be identified in survivors, their implications for health-related quality of life are not well understood. Methods: Through a cross-sectional analysis of young adult cancer survivors, frailty was assessed with the Fried frailty phenotype and skeletal muscle mass in relation to functional and quality of life outcomes measured by the Medical Outcomes Survey Short-Form 36 (SF-36). z tests compared survivors with US population means, and multivariable linear regression models estimated mean SF-36 scores by frailty and muscle mass with adjustments made for comorbidities, sex, and time from treatment. Results: Sixty survivors (median age, 21 years; range, 18-29) participated in the study. Twenty-five (42%) had low muscle mass, and 25 were either frail or prefrail. Compared with US population means, survivors reported worse health and functional impairments across SF-36 domains that were more common among survivors with (pre)frailty or low muscle mass. In multivariable linear modeling, (pre)frail survivors (vs nonfrail) exhibited lower mean scores for general health (−9.1; P =.05), physical function (−14.9; P <.01), and overall physical health (−5.6; P =.02) independent of comorbid conditions. Conclusions: Measures of frailty and skeletal muscle mass identify subgroups of young adult cancer survivors with significantly impaired health, functional status, and quality of life independent of medical comorbidities. Identifying survivors with frailty or low muscle mass may provide opportunities for interventions to prevent functional and health declines or to reverse this process. Lay Summary: Young adult cancer survivors age more quickly than peers without cancer, which is evidenced by a syndrome of decreased resilience known as frailty. The relationship between frailty (and one of its common components, decreased muscle mass) and quality of life among young adult cancer survivors was examined. Measuring decreased muscle mass and frailty identifies young survivors with poor quality of life, including worse general health, fatigue, physical function, and overall physical health, compared with nonfrail survivors. Interventions to address components of frailty (low muscle mass and weakness) may improve function and quality of life among young adult cancer survivors

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. METHODS: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. FINDINGS: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. INTERPRETATION: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing
    corecore