1,274 research outputs found

    Dynamic screening of a localized hole during photoemission from a metal cluster

    Get PDF
    Recent advances in attosecond spectroscopy techniques have fueled the interest in the theoretical description of electronic processes taking place in the subfemtosecond time scale. Here we study the coupled dynamic screening of a localized hole and a photoelectron emitted from a metal cluster using a semi-classical model. Electron density dynamics in the cluster is calculated with Time-Dependent Density Functional Theory and the motion of the photoemitted electron is described classically. We show that the dynamic screening of the hole by the cluster electrons affects the motion of the photoemitted electron. At the very beginning of its trajectory, the photoemitted electron interacts with the cluster electrons that pile up to screen the hole. Within our model, this gives rise to a significant reduction of the energy lost by the photoelectron. Thus, this is a velocity dependent effect that should be accounted for when calculating the average losses suffered by photoemitted electrons in metals.Comment: 15 pages, 5 figure

    Adding 5-hydroxytryptamine receptor type 3 antagonists may reduce drug-induced nausea in poor insight obsessive-compulsive patients taking off-label doses of selective serotonin reuptake inhibitors: a 52-week follow-up case report

    Get PDF
    Poor-insight obsessive-compulsive disorder (PI-OCD) is a severe form of OCD where the 'typically obsessive' features of intrusive, 'egodystonic' feelings and thoughts are absent. PI-OCD is difficult to treat, often requiring very high doses of serotonergic drugs as well as antipsychotic augmentation. When this occurs, unpleasant side effects as nausea are common, eventually further reducing compliance to medication and increasing the need for pharmacological alternatives. We present the case of a PI-OCD patient who developed severe nausea after response to off-label doses of the selective serotonin reuptake inhibitor (SSRI), fluoxetine. Drug choices are discussed, providing pharmacodynamic rationales and hypotheses along with reports of rating scale scores, administered within a follow-up period of 52 weeks. A slight reduction of fluoxetine dose, augmentation with mirtazapine and a switch from amisulpride to olanzapine led to resolution of nausea while preserving the anti-OCD therapeutic effect. Mirtazapine and olanzapine have already been suggested for OCD treatment, although a lack of evidence exists about their role in the course of PI-OCD. Both mirtazapine and olanzapine also act as 5-hydroxytryptamine receptor type 3 (5-HT3) blockers, making them preferred choices especially in cases of drug-induced nausea

    Predicting mental imagery based BCI performance from personality, cognitive profile and neurophysiological patterns

    Get PDF
    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy— EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user

    Electron quantum metamaterials in van der Waals heterostructures

    Full text link
    In recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques -- for example in the unique coloring of butterfly wings -- to manipulate photons as they propagate through nanoscale periodic assemblies. In this Perspective, we highlight the intriguing potential of designer sub-electron wavelength (as well as wavelength-scale) structuring of electronic matter, which affords a new range of synthetic quantum metamaterials with unconventional responses. Driven by experimental developments in stacking atomically layered heterostructures -- e.g., mechanical pick-up/transfer assembly -- atomic scale registrations and structures can be readily tuned over distances smaller than characteristic electronic length-scales (such as electron wavelength, screening length, and electron mean free path). Yet electronic metamaterials promise far richer categories of behavior than those found in conventional optical metamaterial technologies. This is because unlike photons that scarcely interact with each other, electrons in subwavelength structured metamaterials are charged, and strongly interact. As a result, an enormous variety of emergent phenomena can be expected, and radically new classes of interacting quantum metamaterials designed

    Randomized Controlled Trial of RTS,S/AS02D and RTS,S/AS01E Malaria Candidate Vaccines Given According to Different Schedules in Ghanaian Children

    Get PDF
    Background:The target delivery channel of RTS,S candidate malaria vaccines in malaria-endemic countries in Africa is the World Health Organisation Expanded Program on Immunization. As an Adjuvant System, age de-escalation and schedule selection step, this study assessed 3 schedules of RTS,S/AS01E and RTS,S/AS02D in infants and young children 5–17 months of age in Ghana.Methodology:A Phase II, partially-blind randomized controlled study (blind to vaccine, not to schedule), of 19 months duration was conducted in two (2) centres in Ghana between August 2006 and May 2008. Subjects were allocated randomly (1:1:1:1:1:1) to one of six study groups at each study site, each defining which vaccine should be given and by which schedule (0,1-, 0,1,2- or 0,1,7-months). For the 0,1,2-month schedule participants received RTS,S/AS01E or rabies vaccine at one center and RTS,S/AS01E or RTS,S/AS02D at the other. For the other schedules at both study sites, they received RTS,S/AS01E or RTS,S/AS02D. The primary outcome measure was the occurrence of serious adverse events until 10 months post dose 1.Results:The number of serious adverse events reported across groups was balanced. One child had a simple febrile convulsion, which evolved favourably without sequelae, considered to be related to RTS,S/AS01E vaccination. Low grade reactions occurred slightly more frequently in recipients of RTS,S/AS than rabies vaccines; grade 3 reactions were infrequent. Less local reactogenicity occurred with RTS,S/AS01E than RTS,S/AS02D. Both candidate vaccines were highly immunogenic for anti-circumsporozoite and anti-Hepatitis B Virus surface antigen antibodies. Recipients of RTS,S/AS01E compared to RTS,S/AS02D had higher peak anti-circumsporozoite antibody responses for all 3 schedules. Three dose schedules were more immunogenic than 2 dose schedules. Area under the curve analyses for anti-circumsporozoite antibodies were comparable between the 0,1,2- and 0,1,7-month RTS,S/AS01E schedules.Conclusions:Both candidate malaria vaccines were well tolerated. Anti-circumsporozoite responses were greater with RTS,S/AS01E than RTS,S/AS02D and when 3 rather than 2 doses were given. This study supports the selection of RTS,S/AS01E and a 3 dose schedule for further development in children and infants

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan β in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN
    corecore