95 research outputs found
2-Methoxyoestradiol-3,17-O,O-bis-sulphamate and 2-deoxy-D-glucose in combination: a potential treatment for breast and prostate cancer
Drug combination therapy is a key strategy to improve treatment efficacy and survival of cancer patients. In this study the effects of combining 2-methoxyoestradiol-3,17-O,O-bis-sulphamate (STX140), a microtubule disruptor, with 2-deoxy-D-glucose (2DG) were assessed in MCF-7 (breast) and LNCaP (prostate) xenograft models in vivo. In mice bearing MCF-7 xenografts, daily p.o. administration of STX140 (5 mg kg−1) resulted in a 46% (P<0.05) reduction of tumour volume. However, the combination of STX140 (5 mg kg−1 p.o.) and 2DG (2 g kg−1 i.p.) reduced tumour volume by 76% (P<0.001). 2-Methoxyoestradiol-3,17-O,O-bis-sulphamate also reduced tumour vessel density. 2-Deoxy-D-glucose alone had no significant effect on tumour volume or vessel density. A similar benefit of the combination treatment was observed in the LNCaP prostate xenograft model. In vitro the degree of inhibition of cell proliferation by STX140 was unaffected by oxygen concentrations. In contrast, the inhibition of proliferation by 2DG was enhanced under hypoxia by 20 and 25% in MCF-7 and LNCaP cells, respectively. The combination of STX140 and 2DG in LNCaP cells under normoxia or hypoxia inhibited proliferation to a greater extent than either compound alone. These results suggest that the antiangiogenic and microtubule disruption activities of STX140 may make tumours more susceptible to inhibition of glycolysis by 2DG. This is the first study to show the benefit of combining a microtubule disruptor with 2DG in the two most common solid tumours
Anti-tumour activity of bisphosphonates in preclinical models of breast cancer
There is increasing evidence of anti-tumour effects of bisphosphonates from pre-clinical studies, supporting a role for these drugs beyond their traditional use in treatment of cancer-induced bone disease. A range of model systems have been used to investigate the effects of different bisphosphonates on tumour growth, both in bone and at peripheral sites. Most of these studies conclude that bisphosphonates cause a reduction in tumour burden, but that early intervention and the use of high and/or repeated dosing is required. Successful eradication of cancer may only be achievable by targeting the tumour cells directly whilst also modifying the tumour microenvironment. In line with this, bisphosphonates are demonstrated to be particularly effective at reducing breast tumour growth when used in combination with agents that directly target cancer cells. Recent studies have shown that the effects of bisphosphonates on breast tumours are not limited to bone, and that prolonged anti-tumour effects may be achieved following their inclusion in combination therapy. This has opened the field to a new strand of bisphosphonate research, focussed on elucidating their effects on cells and components of the local, regional and distal tumour microenvironment. This review highlights the recent developments in relation to proposed anti-tumour effects of bisphosphonates reported from in vitro and in vivo models, and summarises the data from key breast cancer studies. Evidence for effects on different processes and cell types involved in cancer development and progression is discussed, and the main outstanding issues identified
Oestrogen and zoledronic acid driven changes to the bone and immune environments: potential mechanisms underlying the differential anti-tumour effects of zoledronic acid in pre- and post-menopausal conditions
Late stage breast cancer commonly metastasises to bone and patient survival averages 2–3 years following diagnosis of bone involvement. One of the most successful treatments for bone metastases is the bisphosphonate, zoledronic acid (ZOL). ZOL has been used in the advanced setting for many years where it has been shown to reduce skeletal complications associated with bone metastasis. More recently, several large adjuvant clinical trials have demonstrated that administration of ZOL can prevent recurrence and improve survival when given in early breast cancer. However, these promising effects were only observed in post-menopausal women with confirmed low concentrations of circulating ovarian hormones. In this review we focus on potential interactions between the ovarian hormone, oestrogen, and ZOL to establish credible hypotheses that could explain why anti-tumour effects are specific to post-menopausal women. Specifically, we discuss the molecular and immune cell driven mechanisms by which ZOL and oestrogen affect the tumour microenvironment to inhibit/induce tumour growth and how oestrogen can interact with zoledronic acid to inhibit its anti-tumour actions
Should digestion assays be used to estimate persistence of potential allergens in tests for safety of novel food proteins?
Food allergies affect an estimated 3 to 4% of adults and up to 8% of children in developed western countries. Results from in vitro simulated gastric digestion studies with purified proteins are routinely used to assess the allergenic potential of novel food proteins. The digestion of purified proteins in simulated gastric fluid typically progresses in an exponential fashion allowing persistence to be quantified using pseudo-first-order rate constants or half lives. However, the persistence of purified proteins in simulated gastric fluid is a poor predictor of the allergenic status of food proteins, potentially due to food matrix effects that can be significant in vivo. The evaluation of the persistence of novel proteins in whole, prepared food exposed to simulated gastric fluid may provide a more correlative result, but such assays should be thoroughly validated to demonstrate a predictive capacity before they are accepted to predict the allergenic potential of novel food proteins
Pharmacological Fingerprints of Contextual Uncertainty
Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. \ua9 2016 Marshall et al
Targeting cancer metabolism: a therapeutic window opens
Genetic events in cancer activate signalling pathways that alter cell metabolism. Clinical evidence has linked cell metabolism with cancer outcomes. Together, these observations have raised interest in targeting metabolic enzymes for cancer therapy, but they have also raised concerns that these therapies would have unacceptable effects on normal cells. However, some of the first cancer therapies that were developed target the specific metabolic needs of cancer cells and remain effective agents in the clinic today. Research into how changes in cell metabolism promote tumour growth has accelerated in recent years. This has refocused efforts to target metabolic dependencies of cancer cells as a selective anticancer strategy.Burroughs Wellcome FundSmith Family FoundationStarr Cancer ConsortiumDamon Runyon Cancer Research FoundationNational Institutes of Health (U.S.
Evidence of causal effect of major depression on alcohol dependence: findings from the psychiatric genomics consortium
BACKGROUND
Despite established clinical associations among major depression (MD), alcohol dependence (AD), and alcohol consumption (AC), the nature of the causal relationship between them is not completely understood. We leveraged genome-wide data from the Psychiatric Genomics Consortium (PGC) and UK Biobank to test for the presence of shared genetic mechanisms and causal relationships among MD, AD, and AC.
METHODS
Linkage disequilibrium score regression and Mendelian randomization (MR) were performed using genome-wide data from the PGC (MD: 135 458 cases and 344 901 controls; AD: 10 206 cases and 28 480 controls) and UK Biobank (AC-frequency: 438 308 individuals; AC-quantity: 307 098 individuals).
RESULTS
Positive genetic correlation was observed between MD and AD (rgMD−AD = + 0.47, P = 6.6 × 10−10). AC-quantity showed positive genetic correlation with both AD (rgAD−AC quantity = + 0.75, P = 1.8 × 10−14) and MD (rgMD−AC quantity = + 0.14, P = 2.9 × 10−7), while there was negative correlation of AC-frequency with MD (rgMD−AC frequency = −0.17, P = 1.5 × 10−10) and a non-significant result with AD. MR analyses confirmed the presence of pleiotropy among these four traits. However, the MD-AD results reflect a mediated-pleiotropy mechanism (i.e. causal relationship) with an effect of MD on AD (beta = 0.28, P = 1.29 × 10−6). There was no evidence for reverse causation.
CONCLUSION
This study supports a causal role for genetic liability of MD on AD based on genetic datasets including thousands of individuals. Understanding mechanisms underlying MD-AD comorbidity addresses important public health concerns and has the potential to facilitate prevention and intervention efforts
20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years
The administration of endocrine therapy for 5 years substantially reduces recurrence rates during and after treatment in women with early-stage, estrogen-receptor (ER)-positive breast cancer. Extending such therapy beyond 5 years offers further protection but has additional side effects. Obtaining data on the absolute risk of subsequent distant recurrence if therapy stops at 5 years could help determine whether to extend treatment
Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials
Background Bisphosphonates have profound effects on bone physiology, and could modify the process of metastasis. We undertook collaborative meta-analyses to clarify the risks and benefits of adjuvant bisphosphonate treatment in breast cancer. Methods We sought individual patient data from all unconfounded trials in early breast cancer that randomised between bisphosphonate and control. Primary outcomes were recurrence, distant recurrence, and breast cancer mortality. Primary subgroup investigations were site of first distant recurrence (bone or other), menopausal status (postmenopausal [combining natural and artificial] or not), and bisphosphonate class (aminobisphosphonate [eg, zoledronic acid, ibandronate, pamidronate] or other [ie, clodronate]). Intention-to-treat log-rank methods yielded bisphosphonate versus control first-event rate ratios (RRs). Findings We received data on 18 766 women (18 206 [97%] in trials of 2–5 years of bisphosphonate) with median follow-up 5·6 woman-years, 3453 first recurrences, and 2106 subsequent deaths. Overall, the reductions in recurrence (RR 0·94, 95% CI 0·87–1·01; 2p=0·08), distant recurrence (0·92, 0·85–0·99; 2p=0·03), and breast cancer mortality (0·91, 0·83–0·99; 2p=0·04) were of only borderline significance, but the reduction in bone recurrence was more definite (0·83, 0·73–0·94; 2p=0·004). Among premenopausal women, treatment had no apparent effect on any outcome, but among 11 767 postmenopausal women it produced highly significant reductions in recurrence (RR 0·86, 95% CI 0·78–0·94; 2p=0·002), distant recurrence (0·82, 0·74–0·92; 2p=0·0003), bone recurrence (0·72, 0·60–0·86; 2p=0·0002), and breast cancer mortality (0·82, 0·73–0·93; 2p=0·002). Even for bone recurrence, however, the heterogeneity of benefit was barely significant by menopausal status (2p=0·06 for trend with menopausal status) or age (2p=0·03), and it was non-significant by bisphosphonate class, treatment schedule, oestrogen receptor status, nodes, tumour grade, or concomitant chemotherapy. No differences were seen in non-breast cancer mortality. Bone fractures were reduced (RR 0·85, 95% CI 0·75–0·97; 2p=0·02). Interpretation Adjuvant bisphosphonates reduce the rate of breast cancer recurrence in the bone and improve breast cancer survival, but there is definite benefit only in women who were postmenopausal when treatment began. Funding Cancer Research UK, Medical Research Council
- …