1,323 research outputs found

    A study on friendship as educational strategy: its meaning by medical students

    Get PDF
    Objetivo: Diagnosticar a Amizade como estratÊgia didåtica. MÊtodos: Estudo qualitativo exploratório e descritivo. Questão norteadora: o que Ê Amizade e um professor amigo? Resultados: A sala de aula, Medicina Psicossomåtica, 2015 / 2º Semestre; 16 alunos brancos, no 6º, 7º e 8º períodos da medicina; 2, segunda graduação; 12 sexo feminino /4 masculino; idade mÊdia +/-25 anos; a maioria, 2 irmãos; provenientes sudeste e centro oeste; 3 casados; 2 com filhos. A Amizade, característica da essência humana, comunicação dos significados do corpo sensível. Os alunos pensam o professor, realizador do seu querer. Conclusão: As atividades pedagógicas na educação, formação e ação na saúde precisam incluir o sentir e o querer dos discentes. Os docentes necessitam competências da espiritualidade humana

    Key drivers of ozone change and its radiative forcing over the 21st century

    Get PDF
    Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth’s radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm−² , (2) 163 ± 109 m Wm−² , and (3) 238 ± 113 m Wm−² due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm−² relative to year 2000 and 760 ± 230 m Wm−² relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry–climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm−²). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ∼ 50 % of the overall radiative forcing for the 2000–2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing

    Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices.

    Get PDF
    Solution-processed semiconducting transition metal dichalcogenides are at the centre of an ever-increasing research effort in printed (opto)electronics. However, device performance is limited by structural defects resulting from the exfoliation process and poor inter-flake electronic connectivity. Here, we report a new molecular strategy to boost the electrical performance of transition metal dichalcogenide-based devices via the use of dithiolated conjugated molecules, to simultaneously heal sulfur vacancies in solution-processed transition metal disulfides and covalently bridge adjacent flakes, thereby promoting percolation pathways for the charge transport. We achieve a reproducible increase by one order of magnitude in field-effect mobility (µFE), current ratio (ION/IOFF) and switching time (τS) for liquid-gated transistors, reaching 10-2 cm2 V-1 s-1, 104 and 18 ms, respectively. Our functionalization strategy is a universal route to simultaneously enhance the electronic connectivity in transition metal disulfide networks and tailor on demand their physicochemical properties according to the envisioned applications.European Commission through the Graphene Flagship, the ERC Grants SUPRA2DMAT (GA-833707), FUTURE-PRINT (GA-694101), Hetero2D, GSYNCOR, the EU Grant Neurofibres, the Agence Nationale de la Recherche through the Labex projects CSC (ANR-10-LABX-0026 CSC) and NIE (ANR-11-LABX-0058 NIE) within the Investissement d’Avenir program (ANR-10-120 IDEX-0002-02), the International Center for Frontier Research in Chemistry (icFRC), EPSRC Grants EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/L016057/1, and the Faraday Institution. The HAADF-STEM characterization was carried out in the Advanced Microscopy Laboratory (Dublin), a Science Foundation Ireland (SFI) supported centre

    Mitochondrial echoes of first settlement and genetic continuity in El Salvador

    Get PDF
    Background: From Paleo-Indian times to recent historical episodes, the Mesoamerican isthmus played an important role in the distribution and patterns of variability all around the double American continent. However, the amount of genetic information currently available on Central American continental populations is very scarce. In order to shed light on the role of Mesoamerica in the peopling of the New World, the present study focuses on the analysis of the mtDNA variation in a population sample from El Salvador. Methodology/Principal Findings: We have carried out DNA sequencing of the entire control region of the mitochondrial DNA (mtDNA) genome in 90 individuals from El Salvador. We have also compiled more than 3,985 control region profiles from the public domain and the literature in order to carry out inter-population comparisons. The results reveal a predominant Native American component in this region: by far, the most prevalent mtDNA haplogroup in this country (at ~90%) is A2, in contrast with other North, Meso- and South American populations. Haplogroup A2 shows a star-like phylogeny and is very diverse with a substantial proportion of mtDNAs (45%; sequence range 16090–16365) still unobserved in other American populations. Two different Bayesian approaches used to estimate admixture proportions in El Salvador shows that the majority of the mtDNAs observed come from North America. A preliminary founder analysis indicates that the settlement of El Salvador occurred about 13,400±5,200 Y.B.P.. The founder age of A2 in El Salvador is close to the overall age of A2 in America, which suggests that the colonization of this region occurred within a few thousand years of the initial expansion into the Americas. Conclusions/Significance: As a whole, the results are compatible with the hypothesis that today's A2 variability in El Salvador represents to a large extent the indigenous component of the region. Concordant with this hypothesis is also the observation of a very limited contribution from European and African women (~5%). This implies that the Atlantic slave trade had a very small demographic impact in El Salvador in contrast to its transformation of the gene pool in neighbouring populations from the Caribbean facade

    Effects of water potential on spore germination and viability of Fusarium species

    Get PDF
    Germination of macroconidia and/or microconidia of 24 strains of Fusarium solani, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. sambucinum, F. oxysporum and F. proliferatum isolated from fluvial channels and sea beds of the south-eastern coast of Spain, and three control strains (F. oxysporum isolated from affected cultures) was studied in distilled water in response to a range of water potentials adjusted with NaCI. (0, -13.79, -41.79, -70.37, -99.56 and -144.54 bars). The vialibility (UFC/ml) of suspension was also tested in three time periods (0,24 and 48h). Conidia always germinated in distilled water. The pattern of conidial germination obseved of F. verticillioides, F. oxysporum, F. proliferatum, F. chlamydosporum and F. culmorum was similar. A great diminution of spore germination was found in -13.79 bars solutions. Spore germination percentage for F. solani isolates was maximal at 48 h. and -13.79 bars with 21.33% spore germination, 16% higher than germination in distilled water. F. equiseti shows the maximum germination percentage in -144.54 bars solution in 24 h time with 12.36% germination. These results did not agree with those obtained in the viability test where maximum germination was found in distilled water. The viability analysis showed the great capacity of F. verticilloides strains to form viable colonies, even in such extreme conditions as -144,54 bars after 24 h F. proliferatum colony formation was prevented in the range of -70.37 bars. These results show the clear affectation of water potential to conidia germination of Fusaria. The ability of certain species of Fusarium to develop a saprophytic life in the salt water of the Mediterraneam Sea could be certain. Successful germination, even under high salty media conditions, suggests taht Fusarium spp. could have a competitive advantage over other soil fungi in crops irrigated with saline water. In the specific case of F. solani, water potential of -13.79 bars affected germination positively. It could indicate that F. solani has an special physiological mechanism of survival in low water potential environments

    Symbiodinium Genotypic and Environmental Controls on Lipids in Reef Building Corals

    Get PDF
    BACKGROUND: Lipids in reef building corals can be divided into two classes; non-polar storage lipids, e.g. wax esters and triglycerides, and polar structural lipids, e.g. phospholipids and cholesterol. Differences among algal endosymbiont types are known to have important influences on processes including growth and the photobiology of scleractinian corals yet very little is known about the role of symbiont types on lipid energy reserves. METHODOLOGY/PRINCIPAL FINDINGS: The ratio of storage lipid and structural lipid fractions of Scott Reef corals were determined by thin layer chromatography. The lipid fraction ratio varied with depth and depended on symbiont type harboured by two corals (Seriatopora hystrix and Pachyseris speciosa). S. hystrix colonies associated with Symbiodinium C1 or C1/C# at deep depths (>23 m) had lower lipid fraction ratios (i.e. approximately equal parts of storage and structural lipids) than those with Symbiodinium D1 in shallow depths (<23 m), which had higher lipid fraction ratios (i.e. approximately double amounts of storage relative to structural lipid). Further, there was a non-linear relationship between the lipid fraction ratio and depth for S. hystrix with a modal peak at ∟23 m coinciding with the same depth as the shift from clade D to C types. In contrast, the proportional relationship between the lipid fraction ratio and depth for P. speciosa, which exhibited high specificity for Symbiodinium C3 like across the depth gradient, was indicative of greater amounts of storage lipids contained in the deep colonies. CONCLUSIONS/SIGNIFICANCE: This study has demonstrated that Symbiodinium exert significant controls over the quality of coral energy reserves over a large-scale depth gradient. We conclude that the competitive advantages and metabolic costs that arise from flexible associations with divergent symbiont types are offset by energetic trade-offs for the coral host

    Modeling Robustness Tradeoffs in Yeast Cell Polarization Induced by Spatial Gradients

    Get PDF
    Cells localize (polarize) internal components to specific locations in response to external signals such as spatial gradients. For example, yeast cells form a mating projection toward the source of mating pheromone. There are specific challenges associated with cell polarization including amplification of shallow external gradients of ligand to produce steep internal gradients of protein components (e.g. localized distribution), response over a broad range of ligand concentrations, and tracking of moving signal sources. In this work, we investigated the tradeoffs among these performance objectives using a generic model that captures the basic spatial dynamics of polarization in yeast cells, which are small. We varied the positive feedback, cooperativity, and diffusion coefficients in the model to explore the nature of this tradeoff. Increasing the positive feedback gain resulted in better amplification, but also produced multiple steady-states and hysteresis that prevented the tracking of directional changes of the gradient. Feedforward/feedback coincidence detection in the positive feedback loop and multi-stage amplification both improved tracking with only a modest loss of amplification. Surprisingly, we found that introducing lateral surface diffusion increased the robustness of polarization and collapsed the multiple steady-states to a single steady-state at the cost of a reduction in polarization. Finally, in a more mechanistic model of yeast cell polarization, a surface diffusion coefficient between 0.01 and 0.001 Âľm2/s produced the best polarization performance, and this range is close to the measured value. The model also showed good gradient-sensitivity and dynamic range. This research is significant because it provides an in-depth analysis of the performance tradeoffs that confront biological systems that sense and respond to chemical spatial gradients, proposes strategies for balancing this tradeoff, highlights the critical role of lateral diffusion of proteins in the membrane on the robustness of polarization, and furnishes a framework for future spatial models of yeast cell polarization

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore