279 research outputs found

    Organ-specific gene expression in transgenic potato: the cloning a new promoter of a class I patatin gene

    No full text
    Using synthetic oligonucleotide probes homologous to conservative AT-rich motif of patatin genes class I of two different clones were isolated from a potato genomic library. One of two different genomic clones named λpat122 was subcloned and analysis 5'-region sequences. Using the chloramphenicol acetyltransferase (CAT) gene as a reporter it has been shown that a 1.8 kb promoter fragment of the class I patatin gene λpat122 provides all the information necessary for both tuber-specific and sucrose-induced expression in leaves in transgenic potato plants.З застосуванням синтетичних олігонуклеотидних зондів, гомологічних консервативному АТ-багатому мотиву пататинових генів классу I, з геномної бібліотеки генів картоплі виділено два клони. Один клон, названий λpat122 , було субклоновано і визначено нуклеотидну послідовність 5'-кінцевої ділянки. Використовуючи ген хлорамфеніколацетилтрансферази як репортерний, було показано, що 1.8 kb фрагмент промотора гена пататину λpat122 несе в собі всю інформацію, необхідну для бульбо-специфічної і цукрозо-регульованої експресії у трансгенних рослинах картоплі.С применением синтетических олигонуклеотидных зондов, гомологичных консервативном АО -богатом мотиве пататинових генов класса I, геномной библиотеки генов картофеля выделенs два клоны. Один клон, названный λpat122 , был субклонован и определена нуклеотиднаяпоследовательность 5' - концевого участка . Используя как репортерный ген хлорамфениколацетилтрансферази , было показано, что 1.8 kb фрагмент промотора гена пататину λpat122 несет в себе всю информацию, необходимую для клуюне-специфической и сахарозы регулируемой экспрессии в трансгенных растениях картофеля

    Design and search for prospective diuretics (CA II Inhibitors) among aroylhydrazones of esters quinone oxime using in silico and in vivo methodology

    Get PDF
    The design and search for new selective inhibitors of CA II with a better pharmacological profile, which would cause minimal electrolyte disturbances in the body, remains an urgent problem of medical chemistry and pharmacology today. It is important that the discovered new classes of inhibitors do not always contain the main “pharmacophoric” function (sulfamide), which is characteristic of “classic” drugs (Acetazolamide, Methazolamide, Ethoxzolamide, Dorzolamide and others), but are derivatives of phenols, polyamines, coumarins/thiocoumarins, ureas, thioureas, hydroxamates, etc. These molecules also bind in the active site of the enzyme, but do not interact directly with the catalytic zinc ion or interact through zinc-coordinated water molecules/hydroxide ion. However, this leads to an increase in their selectivity and, as a result, pharmacological action. Continuing the search for compounds that affect urination, we were interested in aroylhydrazones of esters of quinone oxime. Firstly, they are characterized by certain structural features (dynamic and geometric isomerism); secondly, they exhibit redox properties; thirdly, the presence of aromatic fragments makes it possible to create a voluminous combinatorial library for analysis. These compounds are ligands in complexation reactions, and an additional increase in the number of hydrogen acceptors in the molecule due to structural modification will improve ligand-enzymatic interactions with carbonic anhydrase (CAII) and, as a result, reveal new promising diuretics. The aim – design and search for potential diuretics (CA II inhibitors) among aroylhydrazones of esters of quinone oxime using in silico, traditional synthesis and in vivo methodologies. Methods of organic synthesis, physico-chemical methods of analysis of organic compounds (NMR 1H-spectroscopy, elemental analysis). Prediction of affinity to the biological target, prediction of toxicity and lipophilicity of the combinatorial library of benzohydrazides O-aroyl esters of quinone oxime using computer services. The study of compounds affecting the excretory function of rat kidneys was carried out according to the generally accepted method of E.B.Berkhin with water load. The investigation of the probable mechanism was carried out using flexible molecular docking, as an approach to search for molecules that have affinity for human carbonic anhydrase type II (CA II). Macromolecular data of the crystal structure of CA II (PDB ID – 3HS4) were downloaded from the Protein Data Bank (PDB). The design was developed and the search for diuretic agents among benzohydrazides of O-aroyl esters of quinone oximes was developed using in silico methods (prediction of affinity, lipophilicity, toxicity and enzyme-ligand interactions), traditional organic synthesis, and in vivo methods (effect on excretory function of rat kidneys). The synthesis of benzohydrazides of O-aroyl esters of quinone oxime was carried out by the interaction of aroylhydrazines with 4-[(aroylimino)]cyclohexa-2,5-dien-1-ones. The structure of the synthesized compounds was confirmed by elemental analysis and 1H NMR spectra. Studies of the effect of synthesized compounds on the excretory function of rat kidneys allowed us to identify a number of promising compounds among aroylhydrazones of quinonexime esters, which increase daily diuresis by 54.2-352.8% compared to the control group. At the same time, it was established that the most active was N'-(4-[(2-chlorobenzoyloxy)imino]cyclohexa-2,5-dien-1-ylidene)-3-nitrobenzohydrazide, which increased daily diuresis by 352.8% in comparison with the control group, while exceeding the effect of “Hydrochlorothiazide” (170.8%). The developed and implemented strategy for the search for diuretics among benzohydrazides of O-aroylesters of quinone oxime allowed the identification of an effective compound, which in terms of diuretic effect exceeds the comparison drug “Hydrochlorothiazide”. Visualization of the molecular docking of the active compounds showed that their geometry makes it difficult to place them in the pocket of the active site of CA II, but the pronounced diuretic effect can also be associated with their ability to form coordination bonds with the zinc cation. The obtained results justify the further targeted search for potential diuretics among this class of compounds for a more detailed understanding and study of the mechanism of action

    Genetic transformation of potato (Solanum tuberosum L.) using a binary Agrobacterium tumefaciens vector with patatin promoter class I

    No full text
    Kanamycin resistant plants of S. tuberosum L. (in vitro-grown) cv. Zarevo were obtained from tlie cocultivated microtubers with A. tumefaciens. A disarmed binary vector systems containing the neomycin phosphotransferase (NPT II) gene as selectable marker and chloramphenicol acetyltransferase (CAT), as a reporter gene, under control of new patatin promoter class I were utilized. In vitro grown minitubers discs were used as sources of explants to produce transgenic plants on selective medium containing 100 μg/1 kanamycin and CAT enzyme activities were detected.Стійкі до канаміцину рослини-регенеранти картоплі S. tuberosum L (сорту Зарево) було отримано шляхом культивування мінібульб зі штамом A. tumefaciens. Використано бінарну векторну систему, яка містила ген неоміиинфосфотрансферази (НФТ II) як селективний маркер та репортерний ген хлорамфеніколацетилтрансферази (CAT) під контролем промотора пататииу класу 1. Трансгенні рослини було одержано з трансформованих мінібульб картоплі на селективному поживному середовищі з концентрацією канаміцину 100 мл/л. Було підтверджено активність CAT.Устойчивые к канамицину растения-регенеранты картофеля S. tuberosum L (сорта Зарево) получены культивированием миниклубней со штаммом A. tumefaciens. Использована векторная система, содержащая ген неомицинфосфотрансферазы (НФТ II) как селективный маркер и репортерный ген хлорамфениколацетилтрансферазы (CAT) под контролем промотора пататина класса I. Трансгенные растения получены из трансформированных миниклубней картофеля на селективной питательной среде с концентрацией канамицина. 100 мл/л. Была экспериментально подтверждена активность CAT

    N-arylsulfonyl-2-aroylamino-1,4- quinonе imines and their hydrogenated analogues: prediction of toxicity and prospects for use as diuretics

    Get PDF
    Continuing our research on compounds that affect urination, we have become interested in N-arylsulfonyl-2-aroylamino-1,4-quinone imines, which combine a quinone matrix with tolylsulfonamide and benzamide fragments with versatile biological activity in their structure, which has a promising value in preventing development of pathological processes in kidneys. Therefore, the search for low-toxic compounds with polyvector activity as a promising approach to the design of drug-like molecules has become an urgent aspect in this regard. The aim of this work was to investigate N-arylsulfonyl-2-aroylamino-1,4-quinone imines and their hydrogenated analogues as promising diuretic agents with antiradical and antibacterial activity using in silico, in vitro and in vivo methodologies. The virtual laboratory of the ProTox-II site is used to predict the toxicity of molecules. The study of compounds affecting the excretory function of the rat kidneys was carried out on 120 white Wistar rats according to the method of E.B. Berkhin under conditions of water stress and spontaneous urination. The interaction of the synthesised compounds with 2,2-diphenyl-1- picrylhydrazyl (DPPH) was used to study their antiradical activity in vitro. The antibacterial activity of the compounds was studied on test cultures of the bacteria Escherichia coli, Staphylococcus aureus, Mycobacterium luteum and the fungi Candida tenuis, Aspergillus niger by the method of serial dilutions in a liquid nutrient medium. Based on the results of the calculation, it was predicted that N-arylsulfonyl-2-aroylamino-1,4-quinone imines (2) and their hydrogenated analogues (3) have hepato-(immuno-, cyto-) toxicity, carcinogenicity (mutagenicity) similar to natural quinones and diuretics (toxicity class IV). This class of compounds has been shown to have both stimulatory and inhibitory effects on diuresis under conditions of water stress and spontaneous urination. At the same time, N-(5-methyl-6-oxo-3-(tosylimino)cyclohexa-1,4-dien-1-yl)benzamide (2.3) was revealed to increase daily diuresis by 67.1% compared with the control, exceeding the effect of «Furosemide» (22.2%). It was found that quinone imines (2.1-2.5) inhibited the formation of the DPPH radical by 25.99-40.09%, while their hydrogenated analogues (3.1 and 3.2) – by 61.56% and 68.28%, respectively, and are more effective acceptors of radicals. The microbiological screening revealed a number of promising compounds that inhibited the growth of S. aureus (compound 2.5, MIC 62.5 μg/ml, MBC 125.0 μg/ml), M. luteum (3.1 and 3.2, MIC 31.2 μg/ml, MBC 62.5 μg/ml) and A. niger (2.1, 2.4 and 3.2, MIC 31.2 μg/ml, MPC 62.5 μg/ml). According to the results of biological studies, among N-arylsulfonyl-2-aroylamino-1,4- quinone imines and their hydrogenated analogues, compound 2.3 has been identified, which competes with «Furosemide» in potency and has high antibacterial activity against S. aureus. Other compounds show moderate antiradical activity, high antibacterial activity against M. luteum (2.1, 3.1) and antifungal activity against A. niger (2.1, 2.4, 3.2). The obtained results support the further research for diuretics with polyvector activity within this class of compounds

    N-arylsulfonyl-2-aroylamino-1,4-quinone imines and their hydrogenated analogues: prediction of toxicity and prospects for use as diuretics

    Get PDF
    Sokolova K.V., Podpletnia O.A., Konovalova S.O., Avdieienko A.P., Komarovska-Porokhniavets O.Z., Lubenets V.I., Kovalenko S.I. Continuing our research on compounds that affect urination, we have become interested in N-arylsulfonyl-2-aroylamino-1,4-quinone imines, which combine a quinone matrix with tolylsulfonamide and benzamide fragments with versatile biological activity in their structure, which has a promising value in preventing development of pathological processes in kidneys. Therefore, the search for low-toxic compounds with polyvector activity as a promising approach to the design of drug-like molecules has become an urgent aspect in this regard. The aim of this work was to investigate N-arylsulfonyl-2-aroylamino-1,4-quinone imines and their hydrogenated analogues as promising diuretic agents with antiradical and antibacterial activity using in silico, in vitro and in vivo methodologies. The virtual laboratory of the ProTox-II site is used to predict the toxicity of molecules. The study of compounds affecting the excretory function of the rat kidneys was carried out on 120 white Wistar rats according to the method of E.B. Berkhin under conditions of water stress and spontaneous urination. The interaction of the synthesised compounds with 2,2-diphenyl-1-picrylhydrazyl (DPPH) was used to study their antiradical activity in vitro. The antibacterial activity of the compounds was studied on test cultures of the bacteria Escherichia coli, Staphylococcus aureus, Mycobacterium luteum and the fungi Candida tenuis, Aspergillus niger by the method of serial dilutions in a liquid nutrient medium. Based on the results of the calculation, it was predicted that N-arylsulfonyl-2-aroylamino-1,4-quinone imines (2) and their hydrogenated analogues (3) have hepato-(immuno-, cyto-) toxicity, carcinogenicity (mutagenicity) similar to natural quinones and diuretics (toxicity class IV). This class of compounds has been shown to have both stimulatory and inhibitory effects on diuresis under condi­tions of water stress and spontaneous urination. At the same time, N-(5-methyl-6-oxo-3-(tosylimino)cyclohexa-1,4-dien-1-yl)benzamide (2.3) was revealed to increase daily diuresis by 67.1% compared with the control, exceeding the effect of «Furosemide» (22.2%). It was found that quinone imines (2.1-2.5) inhibited the formation of the DPPH radical by 25.99-40.09%, while their hydrogenated analogues (3.1 and 3.2) – by 61.56% and 68.28%, respectively, and are more effective acceptors of radicals. The microbiological screening revealed a number of promising compounds that inhibited the growth of S. aureus (compound 2.5, MIC 62.5 μg/ml, MBC 125.0 μg/ml), M. luteum (3.1 and 3.2, MIC 31.2 μg/ml, MBC 62.5 μg/ml) and A. niger (2.1, 2.4 and 3.2, MIC 31.2 μg/ml, MPC 62.5 μg/ml). According to the results of biological studies, among N-arylsulfonyl-2-aroylamino-1,4-quinone imines and their hydrogenated analogues, compound 2.3 has been iden­tified, which competes with «Furosemide» in potency and has high antibacterial activity against S. aureus. Other compounds show moderate antiradical activity, high antibacterial activity against M. luteum (2.1, 3.1) and antifungal activity against A. niger (2.1, 2.4, 3.2). The obtained results support the further research for diuretics with polyvector activity within this class of compounds

    Single Top Quark at Future Hadron Colliders. Complete Signal and Background Study

    Get PDF
    We perform a detail theoretical study including decays and jet fragmentation of all the important modes of the single top quark production and all basic background processes at the upgraded Tevatron and LHC colliders. Special attention was paid to the complete tree level calculation of the QCD fake background which was not considered in the previous studies. Analysis of the various kinematical distributions for the signal and backgrounds allowed to work out a set of cuts for an efficient background suppression and extraction of the signal. It was shown that the signal to background ratio after optimized cuts could reach about 0.4 at the Tevatron and 1 at the LHC. The remaining after cuts rate of the signal at the LHC for the lepton+jetslepton+jets signature is expected to be about 6.1 pb and will be enough to study the single top physics even during the LHC operation at a low luminosity.Comment: 15 pages, LaTex, 7 figure

    SND@LHC: The Scattering and Neutrino Detector at the LHC

    Get PDF
    SND@LHC is a compact and stand-alone experiment designed to perform measurements with neutrinos produced at the LHC in the pseudo-rapidity region of 7.2<η<8.4{7.2 < \eta < 8.4}. The experiment is located 480 m downstream of the ATLAS interaction point, in the TI18 tunnel. The detector is composed of a hybrid system based on an 830 kg target made of tungsten plates, interleaved with emulsion and electronic trackers, also acting as an electromagnetic calorimeter, and followed by a hadronic calorimeter and a muon identification system. The detector is able to distinguish interactions of all three neutrino flavours, which allows probing the physics of heavy flavour production at the LHC in the very forward region. This region is of particular interest for future circular colliders and for very high energy astrophysical neutrino experiments. The detector is also able to search for the scattering of Feebly Interacting Particles. In its first phase, the detector will operate throughout LHC Run 3 and collect a total of 250 fb1\text{fb}^{-1}

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    (Anti-)deuteron production in pp collisions at 1as=13TeV

    Get PDF
    The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)

    Multiplicity dependence of inclusive J/psi production at midrapidity in pp collisions at root s=13 TeV

    Get PDF
    Measurements of the inclusive J/psi yield as a function of charged-particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 13 TeV with ALICE at the LHC are reported. The J/psi meson yield is measured at midrapidity (vertical bar y vertical bar <0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (vertical bar eta vertical bar <1) and at forward rapidity (-3.7 <eta <-1.7 and 2.8 <eta <5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/psi yield with normalized dN(ch)/d eta is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. (C) 2020 European Organization for Nuclear Research. Published by Elsevier B.V.Peer reviewe
    corecore