217 research outputs found

    Lithiation phase behaviors of metal oxide anodes and extra capacities

    Get PDF
    Binary metal oxides have received sustained interest as anode materials due to their desirable capacities, exceeding theoretical values particularly in the first discharge. Although they have received increasing attention in recent years, topical debates persist regarding not only their lithiation mechanisms but also the origin of additional capacity. Aiming to resolve these disagreements, we perform a systematic study of a series of iron and manganese oxides to investigate their phase behavior during first discharge. Using a combination of in operando pair distribution function measurements and our recently developed Metropolis non-negative matrix factorization approach to address the analytical challenges concerning materials’ nanoscopic nature and phase heterogeneity, here we report unexpected observation of non-equilibrium FeOx solid-solution phases and pulverization of MnO. These processes are correlated with the extra capacities observed at different depths of discharge, pointing to a metal-dependent nature of this additional capacity and demonstrating the advantage of our approach with promising prospects for diverse applications

    Neutrino Interactions in Hot and Dense Matter

    Get PDF
    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star.Comment: 41 pages, 25 figure

    Uniaxial negative thermal expansion and metallophilicity in Cu3[Co(CN)6]

    Get PDF
    We report the synthesis and structural characterisation of the molecular framework copper(I)hexacyanocobaltate(III), Cu3[Co(CN)6], which we ïŹnd to be isostructural to H3[Co(CN)6] and the colossalnegative thermal expansion material Ag3[Co(CN)6]. Using synchrotron X-ray powder diïŹ€raction measurements,we ïŹnd strong positive and negative thermal expansion behaviour respectively perpendicular and parallel to thetrigonal crystal axis:α= 25.4(5) MKa−1andα= − 43.5(8) MKc−1. These opposing eïŹ€ects collectively result in avolume expansivityα= 7.4(11) MKV−1that is remarkably small for an anisotropic molecular framework. Thisthermal response is discussed in the context of the behaviour of the analogous H- and Ag-containing systems.We make use of density-functional theory with many-body dispersion interactions (DFT + MBD) todemonstrate that Cu+
Cu+metallophilic (‘cuprophilic’) interactions are signiïŹcantly weaker in Cu3[Co(CN)6]than Ag+
Ag+interactions in Ag3[Co(CN)6], but that this lowering of energy scale counterintuitively translatesto a more moderate—rather than enhanced—degree of structural ïŹ‚exibility. The same conclusion is drawn fromconsideration of a simple GULP model, which we also present here. Our results demonstrate that stronginteractions can actually be exploited in the design of ultra-responsive materials if those interactions are set upto act in tension

    Back to the future : using long-term observational and paleo-proxy reconstructions to improve model projections of Antarctic climate

    Get PDF
    Quantitative estimates of future Antarctic climate change are derived from numerical global climate models. Evaluation of the reliability of climate model projections involves many lines of evidence on past performance combined with knowledge of the processes that need to be represented. Routine model evaluation is mainly based on the modern observational period, which started with the establishment of a network of Antarctic weather stations in 1957/58. This period is too short to evaluate many fundamental aspects of the Antarctic and Southern Ocean climate system, such as decadal-to-century time-scale climate variability and trends. To help address this gap, we present a new evaluation of potential ways in which long-term observational and paleo-proxy reconstructions may be used, with a particular focus on improving projections. A wide range of data sources and time periods is included, ranging from ship observations of the early 20th century to ice core records spanning hundreds to hundreds of thousands of years to sediment records dating back 34 million years. We conclude that paleo-proxy records and long-term observational datasets are an underused resource in terms of strategies for improving Antarctic climate projections for the 21st century and beyond. We identify priorities and suggest next steps to addressing this

    A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum

    Get PDF
    A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community

    Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing

    Get PDF
    Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here, we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of hertz to several kilohertz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz; in the Livingston detector, the noise reduction was a factor of 1.9 (5.8 dB). These improvements directly impact LIGO's scientific output for high-frequency sources (e.g., binary neutron star postmerger physics). The improved low-frequency sensitivity, which boosted the detector range by 15%-18% with respect to no squeezing, corresponds to an increase in the astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter-long filter cavity to each detector as part of the LIGO A+ upgrade

    The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry

    Get PDF
    We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an a-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulatio
    • 

    corecore