110 research outputs found

    OXA β-lactamases

    Get PDF
    The OXA β-lactamases were among the earliest β-lactamases detected; however, these molecular class D β-lactamases were originally relatively rare and always plasmid mediated. They had a substrate profile limited to the penicillins, but some became able to confer resistance to cephalosporins. From the 1980s onwards, isolates of Acinetobacter baumannii that were resistant to the carbapenems emerged, manifested by plasmid-encoded β-lactamases (OXA-23, OXA-40, and OXA-58) categorized as OXA enzymes because of their sequence similarity to earlier OXA β-lactamases. It was soon found that every A. baumannii strain possessed a chromosomally encoded OXA β-lactamase (OXA-51-like), some of which could confer resistance to carbapenems when the genetic environment around the gene promoted its expression. Similarly, Acinetobacter species closely related to A. baumannii also possessed their own chromosomally encoded OXA β-lactamases; some could be transferred to A. baumannii, and they formed the basis of transferable carbapenem resistance in this species. In some cases, the carbapenem-resistant OXA β-lactamases (OXA-48) have migrated into the Enterobacteriaceae and are becoming a significant cause of carbapenem resistance. The emergence of OXA enzymes that can confer resistance to carbapenems, particularly in A. baumannii, has transformed these β-lactamases from a minor hindrance into a major problem set to demote the clinical efficacy of the carbapenems

    Genomic characterization of an NDM-9-producing Acinetobacter baumannii clinical isolate and role of Glu152Lys substitution in the enhanced cefiderocol hydrolysis of NDM-9

    Get PDF
    Here, we characterized the first French NDM-9-producing Acinetobacter baumannii isolate. A. baumannii 13A297, which belonged to the STPas25 (international clone IC7), was highly resistant to β-lactams including cefiderocol (MIC >32 mg/L). Whole genome sequencing (WGS) using both Illumina and Oxford Nanopore technologies revealed a 166-kb non-conjugative plasmid harboring a blaNDM-9 gene embedded in a Tn125 composite transposon. Complementation of E. coli DH5α and A. baumannii CIP70.10 strains with the pABEC plasmid carrying the blaNDM-1 or blaNDM-9 gene, respectively, resulted in a significant increase in cefiderocol MIC values (16 to >256-fold), particularly in the NDM-9 transformants. Interestingly, steady-state kinetic parameters, measured using purified NDM-1 and NDM-9 (Glu152Lys) enzymes, revealed that the affinity for cefiderocol was 3-fold higher for NDM-9 (Km = 53 μM) than for NDM-1 (Km = 161 μM), leading to a 2-fold increase in catalytic efficiency for NDM-9 (0.13 and 0.069 μM−1.s−1, for NDM-9 and NDM-1, respectively). Finally, we showed by molecular docking experiments that the residue 152 of NDM-like enzymes plays a key role in cefiderocol binding and resistance, by allowing a strong ionic interaction between the Lys152 residue of NDM-9 with both the Asp223 residue of NDM-9 and the carboxylate group of the R1 substituent of cefiderocol

    Analysis of OXA-204 carbapenemase-producing <i>Enterobacteriaceae</i> reveals possible endoscopy-associated transmission, France, 2012 to 2014.

    Get PDF
    OXA-48-like beta-lactamase producing bacteria are now endemic in several European and Mediterranean countries. Among this carbapenemase family, the OXA-48 and OXA-181 variants predominate, whereas other variants such as OXA-204 are rarely reported. Here, we report the molecular epidemiology of a collection of OXA-204-positive enterobacterial isolates (n = 29) recovered in France between October 2012 and May 2014. This study describes the first outbreak of OXA-204-producing &lt;i&gt;Enterobacteriaceae&lt;/i&gt; in Europe, involving 12 isolates of an ST90 &lt;i&gt;Escherichia coli&lt;/i&gt; clone and nine isolates of an ST147 &lt;i&gt;Klebsiella pneumoniae&lt;/i&gt; clone. All isolates co-produced the cephalosporinase CMY-4, and 60% of them co-produced the extended-spectrum beta-lactamase CTX-M-15. The &lt;i&gt;bla&lt;/i&gt; &lt;sub&gt;OXA-204&lt;/sub&gt; gene was located on a 150-kb IncA/C plasmid, isolated from various enterobacterial species in the same patient, indicating a high conjugative ability of this genetic vehicle

    Whole genome sequencing,molecular typing and in vivovirulence of OXA-48-producingEscherichia coli isolates includingST131 H30-Rx, H22 and H41subclones

    Get PDF
    Carbapenem-resistant Enterobacteriaceae, including the increasingly reported OXA-48 Escherichia coli producers, are an emerging public health threat worldwide. Due to their alarming detection in our healthcare setting and their possible presence in the community, seven OXA-48-producing, extraintestinal pathogenic E. coli were analysed by whole genome sequencing as well as conventional tools, and tested for in vivo virulence. As a result, five E. coli OXA-48-producing subclones were detected (O25:H4-ST131/PST43-fimH30-virotype E; O25:H4-ST131/PST9-fimH22-virotype D5, O16:H5-ST131/ PST506-fimH41; O25:H5-ST83/PST207 and O9:H25-ST58/PST24). Four ST131 and one ST83 isolates satisfied the ExPEC status, and all except the O16:H5 ST131 isolate were UPEC. All isolates exhibited local inflammatory response with extensive subcutaneous necrosis but low lethality when tested in a mouse sepsis model. The blaOXA-48 gene was located in MOBP131/IncL plasmids (four isolates) or within the chromosome (three ST131 H30-Rx isolates), carried by Tn1999-like elements. All, except the ST83 isolate, were multidrug-resistant, with additional plasmids acting as vehicles for the spread of various resistance genes. This is the first study to analyse the whole genome sequences of blaOXA-48-positive ST131, ST58 and ST83 E. coli isolates in conjunction with experimental data, and to evaluate the in vivo virulence of blaOXA-48 isolates, which pose an important challenge to patient management

    Carbapenem-resistant and carbapenem-susceptible isogenic isolates of Klebsiella pneumoniae ST101 causing infection in a tertiary hospital

    Get PDF
    Background: In this study we describe the clinical and molecular characteristics of an outbreak due to carbapenem-resistant Klebsiella pneumoniae (CR-KP) producing CTX-M-15 and OXA-48 carbapenemase. Isogenic strains, carbapenem-susceptible K. pneumoniae (CS-KP) producing CTX-M-15, were also involved in the outbreak. Results: From October 2010 to December 2012 a total of 62 CR-KP and 23 CS-KP were isolated from clinical samples of 42 patients (22 had resistant isolates, 14 had susceptible isolates, and 6 had both CR and CS isolates). All patients had underlying diseases and 17 of them (14 patients with CR-KP and 3 with CS-KP) had received carbapenems previously. The range of carbapenem MICs for total isolates were: imipenem: 2 to >32 mu g/ml vs. <2 mu g/ml; meropenem: 4 to >32 mu g/ml vs. <2 mu g/ml; and ertapenem: 8 to >32 mu g/ml vs. <2 mu g/ml. All the isolates were also resistant to gentamicin, ciprofloxacin, and cotrimoxazole. Both types of isolates shared a common PFGE pattern associated with the multilocus sequence type 101 (ST101). The bla(CTX-M-15) gene was detected in all the isolates, whereas the bla(OXA-48) gene was only detected in CR-KP isolates on a 70 kb plasmid. Conclusions: The clonal spread of K. pneumoniae ST101 expressing the OXA-48 and CTX-M-15 beta-lactamases was the cause of an outbreak of CR-KP infections. CTX-M-15-producing isolates lacking the blaOXA-48 gene coexisted during the outbreak.This study was supported by CIBER de Enfermedades Respiratorias (CIBERES - CB06/06/0037), ISCIII - Instituto de Salud Carlos III, Madrid, Spain

    Management of multidrug resistant Gram-negative bacilli infections in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations

    Get PDF
    Solid organ transplant (SOT) recipients are especially at risk of developing infections by multidrug resistant (MDR) Gram-negative bacilli (GNB), as they are frequently exposed to antibiotics and the healthcare setting, and are regulary subject to invasive procedures. Nevertheless, no recommendations concerning prevention and treatment are available. A panel of experts revised the available evidence; this document summarizes their recommendations: (1) it is important to characterize the isolate´s phenotypic and genotypic resistance profile; (2) overall, donor colonization should not constitute a contraindication to transplantation, although active infected kidney and lung grafts should be avoided; (3) recipient colonization is associated with an increased risk of infection, but is not a contraindication to transplantation; (4) different surgical prophylaxis regimens are not recommended for patients colonized with carbapenem-resistant GNB; (5) timely detection of carriers, contact isolation precautions, hand hygiene compliance and antibiotic control policies are important preventive measures; (6) there is not sufficient data to recommend intestinal decolonization; (7) colonized lung transplant recipients could benefit from prophylactic inhaled antibiotics, specially for Pseudomonas aeruginosa; (8) colonized SOT recipients should receive an empirical treatment which includes active antibiotics, and directed therapy should be adjusted according to susceptibility study results and the severity of the infection.J.T.S. holds a research contract from the Fundación para la Formación e Investigación de los Profesionales de la Salud de Extremadura (FundeSalud), Instituto de Salud Carlos III. M.F.R. holds a clinical research contract “Juan Rodés” (JR14/00036) from the Spanish Ministry of Economy and Competitiveness, Instituto de Salud Carlos III

    Anticipating the Unpredictable: A Review of Antimicrobial Stewardship and Acinetobacter Infections

    Full text link
    corecore