300 research outputs found

    METABOTROPIC GLUTAMATE 5 RECEPTOR IN THE INFRALIMBIC CORTEX CONTRIBUTES TO DESCENDING PAIN FACILITATION IN HEALTHY AND ARTHRITIC ANIMALS

    Get PDF
    The involvement of the prefrontal cortex in pain processing has been recently addressed. We studied the role of the infralimbic cortex (IL) and group I metabotropic glutamate receptors (mGluRs) in descending modulation of nociception in control and monoarthritic (ARTH) conditions. Nociception was assessed using heat-induced paw withdrawal while drugs were microinjected in the IL of rats. Local anesthesia of the IL or the adjacent prelimbic cortex (PL) facilitated nociception, indicating that IL and PL are tonically promoting spinal antinociception. Phasic activation with glutamate (GLU) revealed opposing roles of the PL and IL; GLU in the PL had a fast antinociceptive action, while in the IL it had a slow onset pronociceptive action. IL administration of a local anesthetic or GLU produced identical results in ARTH and control animals. An mGluR5 agonist in the IL induced a pronociceptive effect in both groups, while mGluR5 antagonists had no effect in controls but induced antinociception in ARTH rats. Activation of the IL mGluR1 (through co-administration of mGluR1/5 agonist and mGluR5 antagonist) did not alter nociception in controls but induced antinociception in ARTH animals. IL administration of an mGluR1 antagonist failed to alter nociception in either experimental group. Finally, mGluR5 but not mGluR1 antagonists blocked the pronociceptive action of GLU in both groups. The results indicate that IL contributes to descending modulation of nociception. mGluR5 in the IL enhance nociception in healthy control and monoarthritic animals, an effect that is tonic in ARTH. Moreover, activation of IL mGluR1s attenuates nociception following the development of monoarthritis. (C) 2015 IBRO. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice

    Get PDF
    Growing evidence supports the concept that polymorphonuclear neutrophils (PMN) are critically involved in inflammation-mediated angiogenesis which is important for wound healing and repair. We employed an oligonucleotide microarray technique to gain further insight into the molecular mechanisms underlying the proangiogenic potential of human PMN. In addition to 18 known angiogenesis-relevant genes, we detected the expression of 10 novel genes, namely midkine, erb-B2, ets-1, transforming growth factor receptor-beta(2) and -beta(3), thrombospondin, tissue inhibitor of metalloproteinase 2, ephrin A2, ephrin B2 and restin in human PMN freshly isolated from the circulation. Gene expression was confi rmed by the RT-PCR technique. In vivo evidence for the role of PMN in neovascularization was provided by studying neovascularization in a skin model of wound healing using CD18-deficient mice which lack PMN infi ltration to sites of lesion. In CD18-deficient animals, neo- vascularization was found to be signifi cantly compromised when compared with wild- type control animals which showed profound neovascularization within the granulation tissue during the wound healing process. Thus, PMN infiltration seems to facilitate inflammation mediated angiogenesis which may be a consequence of the broad spectrum of proangiogenic factors expressed by these cells. Copyright (c) 2006 S. Karger AG, Basel

    Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors

    Get PDF
    Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects

    The degree of acute descending control of spinal nociception in an area of primary hyperalgesia is dependent on the peripheral domain of afferent input

    Get PDF
    Descending controls of spinal nociceptive processing play a critical role in the development of inflammatory hyperalgesia. Acute peripheral nociceptor sensitization drives spinal sensitization and activates spino–supraspinal–spinal loops leading to descending inhibitory and facilitatory controls of spinal neuronal activity that further modify the extent and degree of the pain state. The afferent inputs from hairy and glabrous skin are distinct with respect to both the profile of primary afferent classes and the degree of their peripheral sensitization. It is not known whether these differences in afferent input differentially engage descending control systems to different extents or in different ways. Injection of complete Freund's adjuvant resulted in inflammation and swelling of hairy hind foot skin in rats, a transient thermal hyperalgesia lasting 72 h). In hairy skin, transient hyperalgesia was associated with sensitization of withdrawal reflexes to thermal activation of either A- or C-nociceptors. The transience of the hyperalgesia was attributable to a rapidly engaged descending inhibitory noradrenergic mechanism, which affected withdrawal responses to both A- and C-nociceptor activation and this could be reversed by intrathecal administration of yohimbine (α-2-adrenoceptor antagonist). In glabrous skin, yohimbine had no effect on an equivalent thermal inflammatory hyperalgesia. We conclude that acute inflammation and peripheral nociceptor sensitization in hind foot hairy skin, but not glabrous skin, rapidly activates a descending inhibitory noradrenergic system. This may result from differences in the engagement of descending control systems following sensitization of different primary afferent classes that innervate glabrous and hairy skin

    Effect of tapentadol on neurons in the locus coeruleus

    Get PDF
    Tapentadol is a novel centrally acting drug that combines mu-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition (NRI), producing analgesic effects in various painful conditions. We investigated the acute effects of tapentadol in the locus coeruleus (LC), a central nucleus regulated by the noradrenergic and opioid systems that is critical in pain modulation. In single-unit extracellular recordings of LC neurons from anaesthetized male SpragueeDawley rats, tapentadol clearly inhibited the spontaneous electrophysiological activity of LC neurons in a dose-dependent manner (ED50 ¼ 0.8 mg/kg). This inhibitory effect was reversed by RX821002 (an alpha2-adrenoceptor antagonist) and naloxone (a mu-opioid receptor antagonist) by 96.7% and 28.2%, respectively. Pretreatment with RX821002, Nethoxycarbonyl- 2-ethoxy-1-2-dihydroquinoline (EEDQ, an irreversible alpha2-adrenoceptor antagonist) or naloxone shifted the tapentadol doseeeffect curve to the right (ED50 ¼ 2.2 mg/kg, 2.0 mg/kg and 2.1 mg/kg, respectively). Furthermore, tapentadol inhibited the LC response to mechanical stimulation of the hindpaw in a dose-dependent manner. In summary, we demonstrate that acute administration of tapentadol inhibits LC neurons in vivo, mainly due to the activation of alpha2-adrenoceptors. These data suggest that both the noradrenergic and opioid systems participate in the inhibitory effect of tapentadol on LC neurons, albeit to different extents, which may account for its potent analgesic effect and mild opioidergic side-effects.This study was supported by grants from Grünenthal GmbH (OT2010/075); “Fondo de Investigación Sanitaria” (PI10/01221 and PI12/00915); CIBERSAM (G18); Junta de Andalucía, Consejería de Innovación, Ciencia y Empresa (CTS-510, CTS-4303 and CTS-7748); Cátedra Externa del Dolor Grünenthal-Universidad de Cádiz; FP7-PEOPLE-2010-RG (268377); FPU (AP2007-02397) and FPI (2011-145) fellowship

    TGFB1 and TGFBR1 polymorphisms and breast cancer risk in the Nurses' Health Study

    Get PDF
    Background Transforming growth factor beta 1 (TGFB1) forms a signaling complex with transforming growth factor beta receptors 1 and 2 and has been described as both a tumor suppressor and tumor promoter. Single nucleotide polymorphisms in TGFB1 and a microsatellite in TGFBR1 have been investigated for association with risk of breast cancer, with conflicting results. Methods We examined polymorphisms in the promoter region of the TGFB1 gene as well as the TGFBR1*6A microsatellite in the Nurses\u27 Health Study cohort. Results No overall associations between the L10P polymorphism of TGFB1 or the TGFBR1 microsatellite were detected. However, we observed an inverse association between the -509 C/T polymorphism of TGFB1 (p-trend = 0.04), which was stronger and more significant among women with estrogen receptor positive breast cancer. Conclusion Polymorphisms in the promoter region of TGFB1 are not likely to be associated with large increases in breast cancer risk overall among Caucasian women

    Synaptic Connections of the Neurokinin 1 Receptor-Like Immunoreactive Neurons in the Rat Medullary Dorsal Horn

    Get PDF
    The synaptic connections between neurokinin 1 (NK1) receptor-like immunoreactive (LI) neurons and γ-aminobutyric acid (GABA)-, glycine (Gly)-, serotonin (5-HT)- or dopamine-β-hydroxylase (DBH, a specific marker for norepinephrinergic neuronal structures)-LI axon terminals in the rat medullary dorsal horn (MDH) were examined under electron microscope by using a pre-embedding immunohistochemical double-staining technique. NK1 receptor-LI neurons were observed principally in laminae I and III, only a few of them were found in lamina II of the MDH. GABA-, Gly-, 5-HT-, or DBH-LI axon terminals were densely encountered in laminae I and II, and sparsely in lamina III of the MDH. Some of these GABA-, Gly-, 5-HT-, or DBH-LI axon terminals were observed to make principally symmetric synapses with NK1 receptor-LI neuronal cell bodies and dendritic processes in laminae I, II and III of the MDH. The present results suggest that neurons expressing NK1 receptor within the MDH might be modulated by GABAergic and glycinergic inhibitory intrinsic neurons located in the MDH and 5-HT- or norepinephrine (NE)-containing descending fibers originated from structures in the brainstem

    Perception of Thermal Pain and the Thermal Grill Illusion Is Associated with Polymorphisms in the Serotonin Transporter Gene

    Get PDF
    AIM: The main aim of this study was to assess if the perception of thermal pain thresholds is associated with genetically inferred levels of expression of the 5-HT transporter (5-HTT). Additionally, the perception of the so-called thermal grill illusion (TGI) was assessed. Forty-four healthy individuals (27 females, 17 males) were selected a-priori based on their 5-HTTLPR/rs25531 ('tri-allelic 5-HTTLPR') genotype, with inferred high or low 5-HTT expression. Thresholds for heat- and cold-pain were determined along with the sensory and affective dimensions of the TGI. RESULTS: Thresholds to heat- and cold-pain correlated strongly (rho  = -0.58, p<0.001). Individuals in the low 5-HTT-expressing group were significantly less sensitive to heat-pain (p = 0.02) and cold-pain (p = 0.03), compared to the high-expressing group. A significant gender-by-genotype interaction also emerged for cold-pain perception (p = 0.02); low 5-HTT-expressing females were less sensitive. The TGI was rated as significantly more unpleasant (affective-motivational dimension) than painful (sensory-discriminatory dimension), (p<0.001). Females in the low 5-HTT expressing group rated the TGI as significantly less unpleasant than high 5-HTT expressing females (p<0.05), with no such differences among men. CONCLUSION/SIGNIFICANCE: We demonstrate an association between inferred low 5-HTT expression and elevated thresholds to thermal pain in healthy non-depressed individuals. Despite the fact that reduced 5-HTT expression is a risk factor for chronic pain we found it to be related to hypoalgesia for threshold thermal pain. Low 5-HTT expression is, however, also a risk factor for depression where thermal insensitivity is often seen. Our results may thus contribute to a better understanding of the molecular underpinnings of such paradoxical hypoalgesia. The results point to a differential regulation of thermoafferent-information along the neuraxis on the basis of 5-HTT expression and gender. The TGI, suggested to rely on the central integration of thermoafferent-information, may prove a valuable tool in probing the affective-motivational dimension of these putative mechanisms
    corecore