188 research outputs found

    Age of the Peach Springs Tuff, Southeastern California and Western Arizona

    Get PDF
    Sanidine separates from pumice of the early Miocene Peach Springs Tuff are concordantly dated at 18.5 ± 0.2 Ma by two isotopic techniques. The Peach Springs Tuff is the only known unit that can be correlated between isolated outcrops of Miocene strata from the central Mojave Desert of southeastern California to the western Colorado Plateau in Arizona, across five structural provinces, a distance of 350 km. Thus the age of the Peach Springs Tuff is important to structural and paleogeographic reconstructions of a large region. Biotite and sanidine separates from bulk samples of the Peach Springs Tuff from zones of welding and vapor-phase alteration have not produced consistent ages by the K-Ar method. Published ages of mineral separates from 17 localities ranged from 16.2 to 20.5 Ma. Discordant 40Ar/39Ar incremental release spectra were obtained for one biotite and two of the sanidine separates. Ages that correspond to the last gas increments are as old as 27 Ma. The 40Ar/39Ar incremental release determinations on sanidine separated from blocks of Peach Springs Tuff pumice yield ages of 18.3 ± 0.3 and 18.6 ± 0.4 Ma. Laser fusion measurements yield a mean age of 18.51 ± 0.10. The results suggest that sanidine and biotite K-Ar ages older than about 18.5 Ma are due to inherited Ar from pre-Tertiary contaminants, which likely were incorporated into the tuff during deposition. Sanidine K-Ar ages younger than 18 Ma probably indicate incomplete extraction of radiogenic 40Ar, whereas laser fusion dates of biotite and hornblende younger than 18 Ma likely are due to postdepositional alteration. Laser fusion ages as high as 19.01 Ma on biotite grains from pumice suggest that minerals from pre-Tertiary country rocks also were incorporated in the magma chamber

    Large-magnitude miocene extension in the central Mojave Desert: Implications for Paleozoic to Tertiary paleogeography and tectonics

    Get PDF
    The main Cenozoic extensional structure in the central Mojave Desert is the Waterman Hills detachment fault, which places brittely deformed synorogenic Miocene rocks on ductilely and cataclastically deformed footwall rocks. The mylonitic fabric in the lower plate was formed at 23 Ma, based on a zircon U/Pb age from a synmylonitic intrusion. Upper plate strata consist of rhyolite flows overlain by sedimentary rocks that were apparently deposited during extensional faulting. These strata were tilted, folded, and intruded by synkinematic rhyolite plugs that are cut off at the detachment fault. Potassium metasomatism of the rhyolitic rocks is pervasive. Upper plate detrital sediment was derived from the rhyolitic rocks and from metamorphic and plutonic basement rocks not present in the area. The probable source of the exotic basement clasts is the Alvord Mountain area, presently located 35 km east-northeast of the Waterman Hills area. This source was probably much nearer to the Waterman Hills during deposition of the synorogenic deposits and has been subsequently shifted by extensional deformation. Distinctive Mesozoic plutonic rocks provide a possible tie between upper and lower plate rocks. Similar poikilitic gabbro bodies in the Goldstone area and the Iron Mountains suggest slip on the Waterman Hills detachment faultmore » to be about 40-50 km. This is also consistent with other offset markers, such as the western edge of a Mesozoic dike swarm. When 15-20 km( ) of Tertiary extension is restored, Paleozoic eugeoclinal rocks are placed structurally above their miogeoclinal counterparts. Combined with the distribution of Triassic and Jurassic rocks, this implies post-Early Triassic and pre-Late Jurassic stacking of these lithologies.« les

    Age of the Peach Springs Tuff, southeastern California and western Arizona

    Get PDF
    Sanidine separates from pumice of the early Miocene Peach Springs Tuff (PST) are concordantly dated at 18.5 {plus minus} 0.2 Ma by two isotopic techniques. The PST is the only known unit that can be correlated between isolated outcrops of Miocene strata from the central Mojave Desert of southeastern California to the western Colorado Plateau in Arizona, across five structural provinces, a distance of 350 km. Thus the age of the PST is important to structural and paleogeographic reconstructions of a large region. Biotite and sanidine separates from bulk samples of the PST from zones of welding and vapor-phase alteration have not produced consistent ages by the K-Ar method. Published ages of mineral separates from 17 localities ranged from 16.2 to 20.5 Ma. Discordant {sup 40}Ar/{sup 39}Ar incremental release spectra were obtained for one biotite and two of the sanidine separates. Ages that correspond to the last gas increments are old as 27 Ma. The {sup 40}Ar/{sup 39}Ar incremental release determinations on sanidine separated from blocks of PST pumice yield ages of 18.3 {plus minus} 0.3 and 18.6 {plus minus} 0.4 Ma. Laser fusion measurements yield a mean age of 18.51 {plus minus} 0.10. The results suggest that sanidine andmore » biotite K-Ar ages older than about 18.5 Ma are due to inherited Ar from pre-Tertiary contaminants, which likely were incorporated into the tuff during deposition. Sanidine K-Ar ages younger than 18 Ma probably indicate incomplete extraction of radiogenic {sup 40}Ar, whereas laser fusion dates of biotite and hornblende younger than 18 Ma likely are due to postdepositional alteration.« les

    Mineralogy and Genesis of the Windjana Sandstone, Kimberley Area, Gale Crater, Mars

    Get PDF
    MSL Curiosity investigated the Windjana sandstone outcrop, in the Kimberley area of Gale Crater, and obtained mineralogical analyses with the CheMin XRD instrument. Windjana is remarkable in containing an abundance of potassium feldspar (and thus K in its bulk chemistry) combined with a low abundance of plagioclase (and low Na/K in its chemistry). The source of this enrichment in K is not clear, but has significant implications for the geology of Gale Crater and of Mars. The high K could be intrinsic to the sediment and imply that the sediment source area (Gale Crater rim) includes K-rich basalts and possibly more evolved rocks derived from alkaline magmas. Alternatively, the high K could be diagenetic and imply that the Gale Crater sediments were altered by K-rich aqueous fluids after deposition

    Active megadetachment beneath the western United States

    Get PDF
    Geodetic data, interpreted in light of seismic imaging, seismicity, xenolith studies, and the late Quaternary geologic history of the northern Great Basin, suggest that a subcontinental-scale extensional detachment is localized near the Moho. To first order, seismic yielding in the upper crust at any given latitude in this region occurs via an M7 earthquake every 100 years. Here we develop the hypothesis that since 1996, the region has undergone a cycle of strain accumulation and release similar to “slow slip events” observed on subduction megathrusts, but yielding occurred on a subhorizontal surface 5–10 times larger in the slip direction, and at temperatures >800°C. Net slip was variable, ranging from 5 to 10 mm over most of the region. Strain energy with moment magnitude equivalent to an M7 earthquake was released along this “megadetachment,” primarily between 2000.0 and 2005.5. Slip initiated in late 1998 to mid-1999 in northeastern Nevada and is best expressed in late 2003 during a magma injection event at Moho depth beneath the Sierra Nevada, accompanied by more rapid eastward relative displacement across the entire region. The event ended in the east at 2004.0 and in the remainder of the network at about 2005.5. Strain energy thus appears to have been transmitted from the Cordilleran interior toward the plate boundary, from high gravitational potential to low, via yielding on the megadetachment. The size and kinematic function of the proposed structure, in light of various proxies for lithospheric thickness, imply that the subcrustal lithosphere beneath Nevada is a strong, thin plate, even though it resides in a high heat flow tectonic regime. A strong lowermost crust and upper mantle is consistent with patterns of postseismic relaxation in the southern Great Basin, deformation microstructures and low water content in dunite xenoliths in young lavas in central Nevada, and high-temperature microstructures in analog surface exposures of deformed lower crust. Large-scale decoupling between crust and upper mantle is consistent with the broad distribution of strain in the upper crust versus the more localized distribution in the subcrustal lithosphere, as inferred by such proxies as low P wave velocity and mafic magmatism

    Identifying work related injuries: comparison of methods for interrogating text fields

    Get PDF
    Background: Work-related injuries in Australia are estimated to cost around $57.5 billion annually, however there are currently insufficient surveillance data available to support an evidence-based public health response. Emergency departments (ED) in Australia are a potential source of information on work-related injuries though most ED’s do not have an ‘Activity Code’ to identify work-related cases with information about the presenting problem recorded in a short free text field. This study compared methods for interrogating text fields for identifying work-related injuries presenting at emergency departments to inform approaches to surveillance of work-related injury.---------- Methods: Three approaches were used to interrogate an injury description text field to classify cases as work-related: keyword search, index search, and content analytic text mining. Sensitivity and specificity were examined by comparing cases flagged by each approach to cases coded with an Activity code during triage. Methods to improve the sensitivity and/or specificity of each approach were explored by adjusting the classification techniques within each broad approach.---------- Results: The basic keyword search detected 58% of cases (Specificity 0.99), an index search detected 62% of cases (Specificity 0.87), and the content analytic text mining (using adjusted probabilities) approach detected 77% of cases (Specificity 0.95).---------- Conclusions The findings of this study provide strong support for continued development of text searching methods to obtain information from routine emergency department data, to improve the capacity for comprehensive injury surveillance

    Marine Volcaniclastic Record of Early Arc Evolution in the Eastern Ritter Range Pendant, Central Sierra Nevada, California

    Get PDF
    Marine volcaniclastic rocks in the Sierra Nevada preserve a critical record of silicic magmatism in the early Sierra Nevada volcanic arc, and this magmatic record provides precise minimum age constraints on subduction inception and tectonic evolution of the early Mesozoic Cordilleran convergent margin at this latitude. New zircon Pb/U ages from the Ritter Range pendant and regional correlations indicate arc inception no later than mid‐Triassic time between 37 and 38°N. The regional first‐order felsic magma eruption rate as recorded by marine volcanic arc rocks was episodic, with distinct pulses of ignimbrite emplacement at ca. 221 to 216 Ma and 174 to 167 Ma. Ignimbrites range from dacite to rhyolite in bulk composition, and are petrographically similar to modern arc‐type, monotonous intermediate dacite or phenocryst‐poor, low‐silica rhyolite. Zircon trace element geochemistry indicates that Jurassic silicic melts were consistently Ti‐ and light rare earth‐enriched and U‐depleted in comparison to Triassic melts of the juvenile arc, suggesting Jurassic silicic melts were hotter, drier, and derived from distinct lithospheric sources not tapped in the juvenile stage of arc construction. Pulses of ignimbrite deposition were coeval with granodioritic to granitic components of the underlying early Mesozoic Sierra Nevada batholith, suggesting explosive silicic volcanism and batholith construction were closely coupled at one‐ to two‐million‐year time scales

    Exhumation of the Inyo Mountains, California: Implications for the Timing of Extension along the Western Boundary of the Basin and Range Province and Distribution of Dextral Fault Slip Rates across the Eastern California Shear Zone

    Get PDF
    New geologic mapping, tectonic geomorphologic, 10Be terrestrial cosmogenic nuclide, and (U-Th)/He zircon and apatite thermochronometric data provide the first numerical constraints on late Cretaceous to late Quaternary exhumation of the Inyo Mountains and vertical slip and horizontal extension rates across the eastern Inyo fault zone, California. The east-dipping eastern Inyo fault zone bounds the eastern flank of the Inyo Mountains, a prominent geomorphic feature within the western Basin and Range Province and eastern California shear zone. (U-Th)/He zircon and apatite thermochronometry yield age patterns across the range that are interpreted as indicating: (1) two episodes of moderate to rapid exhumation associated with Laramide deformation during the late Cretaceous/early Tertiary; (2) development of a slowly eroding surface during a prolonged period from early Eocene to middle Miocene; (3) rapid cooling, exhumation, and initiation of normal slip along the eastern Inyo fault zone, accommodated by westward tilting of the Inyo Mountains block, at 15.6 Ma; and (4) rapid cooling, exhumation, and renewed normal slip along the eastern Inyo fault zone at 2.8 Ma. Fault slip continues today as indicated by fault scarps that cut late Pleistocene alluvial fan surfaces. The second episode of normal slip at 2.8 Ma also signals onset of dextral slip along the Hunter Mountain fault, yielding a Pliocene dextral slip rate of 3.3 ± 1.0 mm/a, where a is years. Summing this dextral slip rate with estimated dextral slip rates along the Owens Valley, Death Valley, and Stateline faults yields a net geologic dextral slip rate across the eastern California shear zone of 9.3 + 2.2/–1.4 to 9.8 + 1.4/–1.0 mm/a

    Changes in Glial Cell Line-derived Neurotrophic Factor Expression in the Rostral and Caudal Stumps of the Transected Adult Rat Spinal Cord

    Get PDF
    Limited information is available regarding the role of endogenous Glial cell line-derived neurotrophic factor (GDNF) in the spinal cord following transection injury. The present study investigated the possible role of GDNF in injured spinal cords following transection injury (T9–T10) in adult rats. The locomotor function recovery of animals by the BBB (Basso, Beattie, Bresnahan) scale score showed that hindlimb support and stepping function increased gradually from 7 days post operation (dpo) to 21 dpo. However, the locomotion function in the hindlimbs decreased effectively in GDNF-antibody treated rats. GDNF immunoreactivty in neurons in the ventral horn of the rostral stump was stained strongly at 3 and 7 dpo, and in the caudal stump at 14 dpo, while immunostaining in astrocytes was also seen at all time-points after transection injury. Western blot showed that the level of GDNF protein underwent a rapid decrease at 7 dpo in both stumps, and was followed by a partial recovery at a later time-point, when compared with the sham-operated group. GDNF mRNA-positive signals were detected in neurons of the ventral horn, especially in lamina IX. No regenerative fibers from corticospinal tract can be seen in the caudal segment near the injury site using BDA tracing technique. No somatosensory evoked potentials (SEP) could be recorded throughout the experimental period as well. These findings suggested that intrinsic GDNF in the spinal cord could play an essential role in neuroplasticity. The mechanism may be that GDNF is involved in the regulation of local circuitry in transected spinal cords of adult rats
    corecore