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ABSTRACT 

Marine volcaniclastic rocks in the Sierra Nevada preserve a critical record of silicic magmatism 

in the early Sierra Nevada volcanic arc, and this magmatic record provides precise minimum age 

constraints on subduction inception and tectonic evolution of the early Mesozoic Cordilleran 
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convergent margin at this latitude. New zircon Pb/U ages from the Ritter Range pendant and  

regional correlations indicate arc inception no later than mid-Triassic time between 37 and 38N.  

The regional first-order felsic magma eruption rate as recorded by marine volcanic arc rocks was  

episodic, with distinct pulses of ignimbrite emplacement at ca. 221 to 216 Ma and 174 to 167  

Ma. Ignimbrites range from dacite to rhyolite in bulk composition, and are petrographically  

similar to modern arc-type, monotonous intermediate dacite or phenocryst-poor, low-silica  

rhyolite. Zircon trace element geochemistry indicates that Jurassic silicic melts were consistently  

Ti- and light rare earth-enriched and U-depleted in comparison to Triassic melts of the juvenile  

arc, suggesting Jurassic silicic melts were hotter, drier, and derived from distinct lithospheric  

sources not tapped in the juvenile stage of arc construction. Pulses of ignimbrite deposition were  

coeval with granodioritic to granitic components of the underlying early Mesozoic Sierra Nevada  

batholith, suggesting explosive silicic volcanism and batholith construction were closely coupled  

at one- to two-million-year time scales.  

Index Terms: 1165, 1065, 8185  

INTRODUCTION  

The destruction of oceanic lithosphere by subduction leads to the growth of volcano-plutonic  

arcs and is a major process of tectonic and chemical evolution of the Earth. Marine sedimentary  

records of arc volcanism can provide insight into the evolutionary history of subduction  

inception, tectonic evolution of a new and evolving convergent margin, and surficial magmatic  

processes early in the generation of new continental crust (Gill et al., 1994; Reagan et al., 2010;  

Ishizuka et al., 2011; Arculus et al., 2015; Straub et al., 2015). Variation in arc magma  

compositions may record changes in slab inputs and/or overriding-plate lithospheric structure as  

the juvenile volcanic arc matures.  
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Early Cordilleran magmatic arc volcanic rocks and broadly contemporaneous batholithic rocks 

are widely exposed in the central Sierra Nevada of California (Bateman, 1992). Intra-batholithic 

pendants in the eastern high Sierra (Figure 1) preserve stratigraphic sections rich in volcanic 

rocks that record the most complete and prolonged record of volcanic arc inception and evolution 

in this continent-fringing volcanic arc setting. Studies of these incompletely preserved volcanic 

sections are critically important to understanding juvenile volcanic arc evolution and potential 

linkages between explosive volcanism and assembly of the underlying batholith. Geochemical 

and geochronological studies of the Sierra Nevada magmatic arc suggest a complex relationship 

between volcanism and batholith construction that remains controversial and poorly constrained 

(Kistler and Swanson, 1981; Busby-Spera, 1984; Saleeby et al., 1990; Glazner, 1991; Bateman, 

1992; Fiske and Tobisch, 1994; Tobisch et al., 2000; Barth et al., 2012, 2013).  

Magmatic zircons in arc volcaniclastic rocks provide coupled temporal and geochemical records 

of silicic melt evolution that complement whole rock analyses and resist the effects of 

hydrothermal alteration and subsequent metamorphism. In this study we use geochronology and 

geochemistry of zircons in tuffs to decipher the temporal evolution of the Sierra marine volcanic 

arc from inception through its first ~80 m.y. of magmatism. We report seventeen new Pb/U 

zircon ages and associated whole rock and zircon geochemistry for dacitic to rhyolitic ignimbrite 

marker units from the eastern Ritter Range pendant and adjacent Mount Morrison pendant in the 

east-central Sierra Nevada (Figures 1 and 2). By their nature, felsic ignimbrites provide only a 

partial record of arc volcanism, but these tuffs provide consistently datable horizons for 

constraining both the timing of deposition and the subsequent structural evolution of 
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stratigraphic sequences in Sierran pendants. In addition, whole rock and zircon geochemistry of 

tuffs provides insight into silicic volcanic rocks compositionally akin to voluminous Mesozoic 

granodioritic to granitic batholithic rocks. Comparison of ages and compositions of felsic 

ignimbrites in the Ritter Range and adjacent pendants with the geochronology and geochemistry 

of intrusive suites exposed beneath volcanic sequences provides temporal control and petrologic 

evidence for links between explosive felsic arc volcanism and early arc batholith construction 

(Chen and Moore, 1982; Saleeby et al., 1990; Bateman, 1992; Barth et al., 2011, 2012). 

GEOLOGIC SETTING 

Marine arc inception and early arc evolution are recorded in both plutonic and volcanic rocks in 

the Sierra Nevada of east-central California. The Triassic Scheelite and Jurassic Palisade Crest 

Intrusive Suites are exposed in the eastern range front of the central Sierra Nevada and in 

adjacent ranges to the east (Sawka et al., 1990; Bateman, 1992; Mahan et al., 2003; Barth et al., 

2011). Along the western margin of these intrusive suites, the Saddlebag Lake, Ritter Range and 

Mount Morrison pendants preserve early Mesozoic marine volcanic rocks, including widespread 

ignimbrites of Triassic and Jurassic age interbedded with lava flows, breccias, and bedded tuffs 

(Fiske and Tobisch, 1978; Kistler and Swanson, 1981; Sorensen et al., 1998; Schweickert and 

Lahren, 1993, 2006). Volcanic and volcaniclastic rocks were emplaced in a marine setting, as 

evidenced by interbedded marine limestones in some locations and delicate hyaloclastic textures 

in others (Fiske and Tobisch, 1978; Roberts et al., 2011; Fields et al., 2017).  Although recent 

marine eruptions of large-volume ignimbrites have not been documented, caldera formation in 

subaqueous settings has been common in young arcs such as Izu-Bonin (Fiske et al., 2001; Tani 

et al., 2008; Tamura et al., 2009), Kermadec (Lloyd et al., 1996; Wright et al., 2003), and 
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southwest Japan (e.g., Aira caldera; Aramaki, 1984). Dateable ignimbrites occur 50 meters or 

less above the base of the exposed volcaniclastic section in the Saddlebag Lake and Ritter Range 

pendants; ages of ignimbrites thus represent precise but minimum age constraints for inception 

and record explosive silicic magmatic evolution of a long-lived marine arc at this latitude. 

Structural and stratigraphic studies in arc volcanic rocks exposed in east Sierra pendants have 

suggested a broadly three-stage history of the Mesozoic volcanic arc, with early marine arc 

deposition of volcaniclastic rocks and lavas and later regional shortening and tilting in Late 

Jurassic and/or Early Cretaceous time, followed by renewed deposition in Cretaceous time in a 

subaerial arc setting (Fiske and Tobisch, 1978, 1994; Tobisch et al., 1977, 1986, 2000; Sorensen 

et al., 1998; Schweickert and Lahren, 1999). Most pendants preserve only part of this three-stage 

Mesozoic history, but one of the best-exposed and continuous records is represented by volcanic 

and volcaniclastic rocks of the Saddlebag and Ritter Range pendants (Tobisch et al., 2000; 

Schweickert and Lahren, 2006). The stratigraphic sequence in these pendants is the most 

continuous record of the Sierra Nevada volcanic arc, but recovering this record requires 

accounting for the effects of hydrothermal alteration, flattening and imbrication by thrusting, and 

a low P/T metamorphic overprint associated with later Mesozoic plutonism (Hanson et al., 1993; 

Sorensen et al., 1998). 

The composite section of metamorphosed Mesozoic volcanic rocks in the eastern Sierra Nevada 

belongs to the Koip sequence (Kistler, 1966a, b; Kistler and Swanson, 1981; Bateman et al., 

1983), unconformably overlying Paleozoic to early Triassic metasedimentary rocks of the distal 

Cordilleran passive margin (Stevens and Greene, 1999, 2000; Figures 3 and 4). In the Saddlebag 
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Lake pendant, 232 to 219 Ma silicic ignimbrites are intercalated with andesitic dome facies and 

metasedimentary rocks in an imbricated section (Schweickert and Lahren, 2006; Barth et al., 

2011, 2012; Savage et al., 2017). This volcaniclastic section extends southward into the eastern 

Ritter Range pendant (Huber and Rinehart, 1965), where metavolcanic rocks are predominantly 

tuff, lapilli tuff, tuff breccia, and lavas, with prominent marker units of ignimbrite that range 

from <1 m to ~350 m in thickness (Tobisch et al., 1977; Hanson et al., 1993; Sorensen et al., 

1998). Thin intercalated beds of calc-silicates, carbonate-cemented bedded tuffs, and (locally 

fossiliferous) limestone in the Ritter Range pendant are a principal line of evidence for marine 

deposition of the Koip sequence. Huber and Rinehart (1965) suggested correlation of the Ritter 

Range pendant to compositionally similar volcaniclastic rocks in the western Mount Morrison 

pendant (Rinehart and Ross, 1964), though the precise connection between the two pendants is 

obscured by a cover of Neogene volcanic rocks associated with the Long Valley caldera. 

In this study we sampled weakly deformed ignimbrite horizons with relatively well-preserved 

primary igneous textures from the volcaniclastic section in the Ritter Range pendant (Figures 2 

and 3). Petrographically, tuffs throughout the eastern Ritter Range pendant are broadly similar, 

felsic lapilli tuffs, containing lithic fragments, flattened pumice lapilli, and relict phenocrysts in 

a finer-grained and recrystallized quartzofeldspathic matrix (Figure 5). Tuffs in the easternmost 

part of the section are porphyritic with 10 to 25% phenocrysts of quartz, feldspar, and 

pseudomorphs of biotite. Farther to the west, tuffs are commonly relatively crystal-rich, with 25-

40% phenocrysts of quartz, feldspar, and pseudomorphs of biotite ± amphibole. Quartz 

phenocrysts preserve igneous textures with subhedral to locally euhedral outlines that are deeply 
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embayed, despite pervasive deformation lamellae and subgrain development, and feldspar 

phenocryst are mostly subhedral although commonly fractured. 

All early Mesozoic volcaniclastic rocks in the eastern Ritter Range pendant are vertical to steeply 

southwest dipping and upright, and are cut by shear zones at very low angles to compositional 

layering (Figure 3; Fiske and Tobisch, 1978; Tobisch et al., 1986; Bateman, 1992). Strain 

markers, primarily quartz phenocrysts and lapilli in tuffs and clasts in tuff breccias, suggest 

highly heterogeneous flattening strains, with average elongations of 30 to 50% measured 

perpendicular to foliation (Tobisch et al., 1977). All units have been metamorphosed in albite 

epidote hornfels to hornblende hornfels facies at temperatures of ~400° to 550°C and pressures 

less than 300 MPa (Hanson et al., 1993). In tuffs, cleavage development and metamorphism 

resulted in matrix recrystallization to quartz + feldspar + biotite + muscovite + chlorite. Pyroxene 

hornfels facies assemblages were developed <0.5 km from contacts with intrusive rocks of the 

Late Cretaceous Tuolumne Intrusive Suite (Hanson et al., 1993; Sorensen et al., 1998). This 

observation is consistent with 85 to 80 Ma hornblende and mica 
40

Ar/
39

Ar ages indicating Late 

Cretaceous metamorphism following regional tilting and faulting of the volcanic section 

(Tobisch et al., 2000; Sharp et al., 2000). 

Fiske and Tobisch (1978) and Tobisch et al. (1977, 2000) used all available published and 

unpublished, conventional zircon bulk-fraction thermal ionization mass spectrometry (TIMS) 

ages to divide the metavolcanic section in the eastern Ritter Range pendant into four structural 

blocks (Figure 3). Block I was interpreted to contain Late Triassic to Early Jurassic volcaniclastic 

rocks overlain along an unconformity by a tuff dated at ~163 Ma and associated 
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tuff breccias and lavas. Block II was interpreted to contain a repeated sequence of upper Block I 

units, including proposed correlation of a tuff dated at two localities at 163 and 164 Ma with the 

163 Ma tuff in Block I. An Early Jurassic age for at least part of Block II is supported by the 

presence of pelecypod Weyla in a limestone bed near the base of the block north of Garnet Lake 

(Rinehart et al., 1959). Block III was interpreted to contain an imbricated section of Late Triassic 

(211 and 203 Ma) tuffs and associated Late Triassic to Early Jurassic volcaniclastic rocks. Block 

IV was interpreted to contain Early to Middle Jurassic volcaniclastic rocks. In this study we 

report thirteen new ages from tuffs in Block I that support a general early Mesozoic age 

assignment but require a more complex structural evolution for the block, and three new ages 

from block II to test the correlation of tuffs with Block I. 

ANALYTICAL METHODS 

Isotopic compositions and minor and trace element abundances in zircon were measured by 

secondary ion mass spectrometry (SIMS) on the U.S. Geological Survey SHRIMP-RG ion 

microprobe at Stanford University. Grains were mounted in epoxy and polished to expose grain 

interiors, and imaged with a scanning electron microscope using a cathodoluminescence 

detector. Isotopic ratios and U, Th, and Pb concentrations were measured using a ~30 μm 

diameter, 4 nA O2- primary beam and data reduction procedures described in Barth and Wooden 

(2006). Measured ages were standardized to zircons from the Middledale Diorite (TEMORA-2, 

416.8 Ma; Black et al., 2003, 2004) or the Braintree Complex (R33, 419 Ma; Black et al., 2004) 

(Table S1). Errors on individual spot ages are reported at 1 sigma, and weighted mean ages of 

populations of zircons are reported at the 2 sigma (95% confidence) level (Table 1). Following 

age determinations, grain mounts were lightly polished to remove sputtered pits, recoated with 
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gold, and analyzed for a suite of trace elements using a ~15 to 20 μm diameter, 1 to 2 nA O2
-

primary beam; analytical and data reduction procedures were described by Barth and Wooden 

(2010) (Table S2). 
206

Pb/
238

U was measured at the end of each trace element mass scan to assure 

that elemental data came from a zircon volume of the same age as determined from dated spots. 

Concentrations were standardized against Madagascar Green zircons (MAD, MADDER; 

Mazdab and Wooden, 2006). 

Major elements in tuff whole rocks were measured by x-ray fluorescence and trace elements 

were measured by inductively coupled plasma–mass spectrometry at Michigan State University 

(Table S3). In-run precision was monitored using JB-1a and BHVO basalt standards, and is better 

than 1% for most major elements and trace elements present in abundances >100 ppm, and is 

typically 2-5% for less abundant trace elements. Additional whole rock major element analyses 

analyzed as part of the Sorensen et al. (1998) study are also reported in Table S3. 

ZIRCON U-PB GEOCHRONOLOGY 

SIMS geochronology of felsic tuffs in the Ritter Range is based on 
206

Pb*/
238

U spot ages in

single detrital grains, with radiogenic Pb (
206

Pb*) corrected for common Pb using measured

207
Pb/

206
Pb (Ireland and Williams, 2003). Ages based on 

207
Pb/

235
U and 

207
Pb/

206
Pb are not

reported due to large uncertainties in measured 
207

Pb and calculated ratios. Most samples yielded 

a single dominant population (typically 70 – 90%) of grains in terms of measured 
206

Pb*/
238

U 

ages, and calculated ages of tuffs are based on the weighted mean 
206

Pb*/
238

U age of this 

population (Table 1). Less common younger grains are assumed to have experienced minor Pb 

loss during metamorphism and/or exhumation. Rare older grains may represent premagmatic 
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zircons or zircons from entrained lithic lapilli, although every effort was made to exclude lithic 

fragments during sample preparation for geochronologic analysis. 

New SIMS ages significantly increase the database of zircon ages for volcanic rocks in the east 

central Sierra Nevada. 
206

Pb*/
238

U ages indicate a strongly bimodal distribution of crystallization 

ages for Ritter Range tuffs (Figures 6 and 7), mostly in Late Triassic and Middle Jurassic time. 

The majority of the tuffs (14 of 16 samples) yield ages that fall within the Triassic or Middle to 

Late Jurassic magmatic pulses (p1, p2) of the California arc (Barth et al., 2013). Five Triassic 

samples also contain one or more distinctly older grains; the majority of these are 226 to 227 Ma 

(n=6), with a single grain at 235 Ma.  

In order to determine stratigraphic and structural relations in Block I, the least understood part of 

the eastern Ritter Range pendant, we dated multiple samples of felsic tuffs in the upper San 

Joaquin River drainage (Figures 2 and 3). Tobisch et al. (2000) reported a 164 ± 2 Ma 

conventional TIMS bulk fraction zircon age for a quartz-rich ash flow tuff (‘lower tuff unit’ 

from the middle of Block I east of Garnet Lake. Tobisch et al. suggested that older units lay to 

the east in Block I, beneath this tuff and above Paleozoic metasedimentary rocks. Five tuff 

samples from the eastern part of this block yielded indistinguishable SIMS ages between 221 ± 2 

and 218 ± 2 Ma. These samples include the tuffs of San Joaquin Mountain and Agnew Meadows, 

the lowermost tuff units preserved unconformably above Paleozoic metasedimentary rocks. In 

contrast, tuffs exposed higher in the sequence along the San Joaquin River (tuffs of Olaine Lake 

and lower Shadow Falls) yield well-defined Middle Jurassic ages of 171 ± 2 and 168 ± 2 Ma 

(Figures 3 and 4). West of the river and still higher in the sequence, four thin tuff units yielded 
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Late Triassic ages, two at 219 Ma that overlap in age with the tuffs of Agnew Meadows and San 

Joaquin Mountain, and two that are significantly younger, with ages of 206 and 207 Ma. The 

prominent thick tuff units exposed between Rosalie Lake and Garnet Lake yielded well-defined 

Jurassic ages of 169 ± 2 to 167 ± 2 Ma. In sum, SIMS ages do not yield a spatial pattern of ages 

consistent with an upright west-facing sequence in Block 1 (Figures 3 and 4). Rather, the data are 

consistent with a repeated succession of Triassic and Jurassic units indicative of a structural 

stratigraphy in Block I that includes at least three imbricated sequences of early Mesozoic 

volcaniclastic rocks. 

We dated three samples of felsic tuffs from Block II in order to determine stratigraphic relations 

within this block and to test proposed correlation with tuff units in Block I (Figure 3). Tobisch et 

al. (2000) reported a 164 ± 2 Ma conventional TIMS zircon age for a quartz-rich ash flow tuff 

(‘upper tuff unit’ from the base of Block II that crops out in lower Shadow Meadows and an age 

of 163 ± 2 for a sample from the same tuff unit near Garnet Lake. Our sample of the tuff of lower 

Shadow Meadows yielded an age of 170.8 ± 1 Ma, and a second sample of a thinner tuff slightly 

higher in the section yielded a slightly younger age of 168.6 ± 1 Ma. The SIMS age of the tuff of 

lower Shadow Meadows is older than the conventional TIMS age reported by Tobisch et al. 

(2000). However, the SIMS ages of the tuffs of upper and lower Shadow Meadows do provide 

support for their proposed correlation with the ‘lower tuff unit’ in Block I, which yielded a SIMS

age of 169 ± 2 Ma. Higher in the section within Block II, a thin tuff near Garnet Lake yielded a 

Jurassic age of 174 ± 3 Ma; the age of this sample is less precise as it is more strongly affected 

by loss of radiogenic Pb than is typical for Jurassic samples in this study. 
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Felsic volcanic rocks in the Mount Morrison pendant lie along strike with the volcanic sequences 

in Block I in the Ritter Range pendant, the connection obscured beneath the cover of the 

Neogene Mammoth Mountain volcanic complex, and were tentatively correlated with them by 

Huber and Rinehart (1965; Figure 1). In the Mount Morrison pendant, the most prominent 

marker unit is the ~1.2 km thick, porphyritic rhyolite tuff of Skelton Lake. A sample of the tuff  

collected near Duck Pass yielded an age of 216.5 ± 1 Ma, overlapping in age with the texturally 

and compositionally similar rhyolitic upper tuff of San Joaquin Mountain (Table 1). 

WHOLE ROCK GEOCHEMISTRY 

Classification of the Ritter Range ignimbrites is based on phenocryst abundances and major 

element contents of whole rocks. Quartz and feldspar phenocryst abundances range from 10 to 

40%, and silica contents range from 66 to 76% (Figure 8), suggesting classification of the tuffs 

as arc-type, phenocryst-rich dacites and rhyolites. The lowest overall silica content was found in 

the Jurassic phenocryst-rich dacite tuff of west Shadow Lake. Most other tuffs are broadly 

similar to low-silica rhyolite tuffs, with a few samples from several of the tuffs ranging to high-

silica rhyolite.  

Although silica contents largely overlap between the two age groups, alkali contents are 

distinctive. Contents of K2O are distinctly high in most Jurassic tuffs, ranging from 5.5 to over 

10%, higher values than observed in modern arc-type ash-flow tuffs. High K2O contents in 

Jurassic tuffs are also associated with low Na2O and Sr contents (Figure 9). Hanson et al. (1993) 

and Sorensen et al. (1998) showed that these high K2O contents are associated with metasomatic 

mineral assemblages and high δ18
O values, concluding that much of the observed K enrichment
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and Na and Sr depletion resulted from seawater alteration at low temperatures soon after 

deposition. In contrast, the Jurassic dacite tuff of west Shadow Lake and all Triassic tuffs do not 

have comparably high whole rock alkali contents that would be indicative of potassic 

metasomatism. 

Fluid-immobile high field strength element abundances support classification of the ignimbrites 

as arc-type dacite and low silica rhyolites and provide additional insight into possible secular 

variations (Figures 8 and 9). Titania and Al2O3 abundances indicate the major element 

compositional similarity of Triassic and Jurassic samples. Rare earth element (REE) abundances 

are also broadly similar; however, Jurassic tuff whole rock samples are generally enriched in Th, 

Zr, and light rare earth elements (REE). This latter observation suggests that some of the 

differences in lithophile element abundances between tuffs may reflect relative lithophile 

element enrichment of Jurassic silicic magmas. 

ZIRCON GEOCHEMISTRY 

Zircons from proximal arc volcaniclastic rocks complement whole rock geochemical data 

indicative of tectonic setting and evolution of silicic melts, because of the resistance of zircon to 

recrystallization during hydrothermal alteration and low-grade metamorphism. Hafnium and 

trace element analyses of magmatic zircons provide independent estimates of the compositional 

characteristics and evolution of Triassic and Jurassic silicic melts following zircon saturation. 

Zircons in the Ritter Ranges tuffs are compositionally variable, both within and between grains 

within a given rock sample, primarily reflecting both varying crystal growth histories and 

progressive silicic melt fractionation following zircon saturation. Grimes et al. (2015) and Barth 
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et al. (2017) have established that zircon compositional ranges reflect specific tectono-

magmatic environments. The zircon compositional data from the Ritter Range, combined with 

data from Saddlebag Lake pendant (Barth et al., 2012), not only provide information about melt 

evolution but also confirm the compositionally distinct nature of Jurassic melts, consistent with 

the differences in the whole rock major and trace element data presented above.  

It is well established that zircon changes systematically toward higher Hf and lower Ti when 

crystallizing in a melt with evolving composition and falling temperature (e.g. Anderson et al., 

2008; Claiborne et al., 2010). Overall ranges in Hf and Ti abundances may reflect in part 

differences in initial melt compositions upon saturation, and changes in Hf and Ti contents 

within samples result from bulk fractionation of the melt and the sensitivity of zircon/melt 

partition coefficients to changing temperature. Hafnium contents in Ritter Range magmatic 

zircons range from 7,000 to 14,000 ppm. Overlapping Hf abundances in Triassic and Jurassic 

suites indicate similar ranges of melt fractionation, consistent with the broad similarity in whole 

rock compositions of the tuffs. Titanium abundances are negatively correlated with Hf in most 

individual samples and in suites, and differences in the range of Ti abundances in the main 

compositional groups suggest that zircon growth in the Triassic melts occurred at relatively 

lower temperatures (Figure 10). Although Ti concentrations in early, low Hf zircons are similar 

for the Triassic and Jurassic main groups, at 9,000 - 11,000 ppm Hf (relatively nearer the 

solidus), Ti concentrations in Triassic zircons range from 2-6 ppm, compared to 5-10 ppm in 

Jurassic zircons. This difference indicates that in the later stage of melt evolution the Triassic 

melts either had a lower aTiO2 or were ~ 50C cooler than the most common Jurassic melts.
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Titanium concentrations for the relatively young (207 Ma) Triassic sample fit best with the 

Jurassic main group, a pattern that is repeated for several other compositional characteristics. 

Ritter Range zircons are divided into four groups based on age and composition. The zircons 

from most Triassic tuffs define a main, coherent group for most element abundances and ratios, 

such as Hf and Ce/U (Figure 10), and zircons from Saddlebag Lake tuffs of similar age are 

compositionally part of this main group. However, zircons from the two relatively young (206 

and 207 Ma) Triassic tuffs in the Ritter Range often separate from this main Triassic group, with 

compositions intermediate between the main Triassic and Jurassic compositional groups. The 

Jurassic data define two compositional groups of the same age. The main Jurassic population is 

distinct in many compositional characteristics from Triassic zircons, especially in higher Ti and 

Ce/U. In contrast, zircons in two Jurassic tuffs (lower Shadow Falls, Olaine Lake) are 

compositionally similar to Triassic data, and zircons in the dacite tuff of west Shadow Lake are 

mixed, with zircons overlapping both the Triassic and Jurassic main compositional groups. The 

age range for the Jurassic samples is limited and the individual ages are not precise enough to 

determine if the compositional differences within the Jurassic group are related to small 

differences in age, as they are for the older and younger Triassic zircons. 

Compositional differences between the main Triassic and Jurassic zircon groups, and the 

transitional character of the relatively young Triassic tuffs, are reinforced by variations in 

normalized U, Ce, and Th abundances (Figure 11). The Triassic zircons, including those in the 

younger samples, are characterized by Th/U of  ~0.2 to 0.5, while the main Jurassic zircon group 

typically has significantly higher Th/U ~0.5 to 1.4 and as high as ~2. Although U concentrations 
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are largely overlapping, average U for the older Triassic is about twice that of the Jurassic (~ 

1,000 vs. 500 ppm), and the younger Triassic zircons are distinct with U mostly less than 300 

ppm. Ce/Yb increases with U/Yb and Hf concentrations in magmatic zircons. The main group of 

Jurassic zircons record growth in melts with higher Ce/Yb and Th/U relative to Hf and U/Yb. 

These observations are consistent with the relative LREE and Th enrichments observed in 

Jurassic tuff whole rocks. 

In summary the main Ritter Range Triassic and Jurassic zircon compositional groups are distinct 

from each other in several key trace element compositional characteristics, including U/Yb 

(higher in the Triassic), and Ce/U, Ce/Yb, and Th/U (all higher in the Jurassic). The data for the 

two young Triassic samples are distinct from the main older Triassic group and in some 

characteristics appear transitional to the main Jurassic group. Two of the Jurassic tuffs have 

zircon compositions very similar to those of the main Triassic group and zircons from a third 

Jurassic tuff have mixed compositions. As will be discussed below, the striking differences in 

Triassic and Jurassic zircon compositions indicate that silicic magma sources and/or 

fractionation processes changed systematically from the Triassic to Jurassic, where distinct and 

more diverse silicic melts were produced in Jurassic time. 

DISCUSSION 

The Triassic to Jurassic volcaniclastic rock sequence of the Ritter Range pendant constitutes a 

record of inception and early evolution of the Sierran volcanic arc. Petrologic data are relatively 

limited for this early arc stage, in comparison to the voluminous mid- to Late Cretaceous episode 

of arc magmatism. Populations of magmatic zircons from this study provide ages for multiple 
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ignimbrite marker units from the eastern part of the pendant, in particular improving the 

temporal resolution in the oldest volcaniclastic rocks along and east of the San Joaquin River. 

Zircon trace element data reinforce the arc affinity of the ignimbrites and provide further 

understanding of the chemical evolution of early arc silicic melts. Below we discuss how zircon 

ages illuminate regional correlations between early arc volcanic sections, and how ages and 

compositions of zircons constrain arc inception and record the secular changes in silicic melts in 

the evolving arc. 

Regional Extent of Tuffs - - Sierran Volcanic Arc Inception and Growth 

The northwest-trending Cordilleran orogen is inferred to have been established by initiation of 

convergence along a sinistral transform boundary that truncated the pre-existing craton margin 

(Burchfiel and Davis, 1981; Stone and Stevens, 1988; Burchfiel et al., 1992; Dickinson, 2008; 

Saleeby, 2011). In the central Sierra Nevada region, initiation of convergence along the 

transform zone is marked by mélange formation and high-pressure metamorphism in the western 

Foothills Terrane. There, the best estimate of the timing of subduction initiation comes from the 

255 ± 20 Ma age of a garnet amphibolite block in the Kaweah mélange, where the mélange is 

nonconformably overlain by ~219 Ma tholeiitic to boninitic lavas that may record supra-

subduction zone infant arc magmatism (Saleeby, 2011).  

Precise geochronologic data for early Sierran arc volcanic successions are another key to 

constraining subduction inception, through timing the initiation of volcanism and style of silicic 

arc magmatism along the pre-existing transform margin. In the east central Sierra Nevada, 

deposition of volcaniclastic rocks above deformed Paleozoic metasedimentary rocks provides a 
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record of the inception of arc volcanism (Kistler, 1966; Bateman, 1992; Saleeby and Busby, 

1993; Schweickert and Lahren, 1993, 2006; Barth et al., 2011). SIMS ages and field relations in 

the Ritter Range pendant, when linked to correlative stratigraphic sections to the north and south 

in Saddlebag Lake and Mount Morrison pendants, respectively, provide a broad regional record 

of initiation of the juvenile Sierra Nevada volcanic arc. Ages of ignimbrites are compared to each 

other and to ages of plutonic whole rocks from underlying intrusive suites in Figure 7. The 221 

to 216 Ma tuffs in the eastern Ritter Range are coeval with Late Triassic tuffs in the Saddlebag 

Lake pendant and southward into the Mount Morrison pendant. The oldest ash flow-tuff in 

Saddlebag Lake pendant extends the Triassic volcanic record back to 232 Ma. Volcanic arc 

inception no later than Early to early Late Triassic time in this region is supported by the oldest 

individual grains dated from these Triassic tuffs, as old as 235-236 Ma in both the Saddlebag 

Lake and Ritter Range pendants. Granodioritic to granitic rocks of the underlying Scheelite 

Intrusive Suite range in age from 226 to 218 Ma, indicating that batholith construction began 

within about 10 m.y. of the beginning of juvenile arc silicic volcanism. 

Consideration of the regional magmatic record suggests that arc inception and the first pulse of 

magmatism in Triassic time was followed by a magmatic lull in the east Sierran arc, reflected in 

both the volcanic record and the ages of plutons in the underlying batholith. This lull, a period 

from about 215 to 175 Ma of persistent low-volume magmatism, is marked in the Ritter Range 

pendant by tuff breccias, mafic lava flows, and rare thin silicic tuffs dated at ~211 to 203 Ma. 

The magmatic lull was followed by rejuvenation of voluminous silicic magmatic arc activity in 

late Early Jurassic time. Existing data show that both plutons and ignimbrites record this second 

pulse of magmatic activity (e.g., Figure 7). Ages of Jurassic tuffs in the eastern Ritter Range 
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pendant range from 174 to 167 Ma, extending to Middle Jurassic ages as young as measured in 

the Oak Creek pendant further south in the eastern Sierra Nevada and coeval with underlying 

quartz dioritic to granitic batholithic rocks of the Palisade Crest Intrusive Suite. Ignimbrites in 

the Saddlebag Lake, Ritter Range and Mount Morrison pendants, petrographically similar to 

modern “monotonous intermediate” dacite or phenocryst-poor low-silica rhyolite, are therefore

regionally spatially associated and coeval with underlying granodioritic to granitic components 

of the early Mesozoic Sierra Nevada batholith. The accumulating evidence of zircon age data 

thus suggests that explosive silicic volcanism in the Sierra Nevada volcanic arc and pulses of 

felsic plutonism in the underlying batholith were closely coupled at one- to two-million-year 

time scales, from mid-Triassic arc inception through Middle Jurassic time. 

Silicic Melt Compositional Diversity in the Early Sierran Volcanic Arc 

Trace element analyses of zircons from global data sets indicate a continuum of compositions 

over a range of tectonomagmatic settings: (1) mid-ocean ridges through back-arc to oceanic 

intra-plate settings, (2) oceanic to continental arc settings, and (3) rifts and plumes in continental 

lithosphere (Claiborne et al., 2010; Grimes et al., 2015; Barth et al., 2017). Zircons from mid-

ocean ridge (Mid-Atlantic and southwest Indian ridges), back-arc (Parece Vela) and oceanic  

intraplate (Iceland) settings establish the range of trace element patterns in zircons from 

magmatic systems not influenced by subduction (Grimes et al., 2009; Carley et al., 2011). In 

comparison to these tectonomagmatic settings, zircons from convergent-margin arcs show 

characteristic depletion in Nb, an element conserved in the slab, and enrichment in U and Th, 

reflective of slab contributions to arc magmas (e.g. Pearce, 1982). Arc zircons are also 
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characterized by high Sc/Yb, which is related to high water contents and lack of extensive basalt 

fractionation in arc parent melts prior to zircon saturation (Grimes et al., 2015). 

Zircons from both the eastern Sierra Triassic and Jurassic magmatic suites exhibit trace element 

compositions consistent with those expected for convergent margin settings, including high 

Sc/Yb relative to U/Yb (Figure 12), decreasing Sc/Yb with increasing U/Yb, with a small 

fraction of the samples overlapping the compositional range of intra-plate zircons. The 

compositions of Izu-Bonin arc zircons are shown for reference, emphasizing the similarity in Sc 

but significantly higher U/Yb in both the Sierran suites, especially the Triassic, compared to this 

modern, primitive oceanic arc. 

Zircons with U/Yb greater than ~0.1-0.2 (and Th/Yb greater than ~0.1) characterize continental 

arc magmatic suites and provide the foundation for the success of U/Yb and Nb/Yb in 

distinguishing zircons from the depleted MORB and primitive oceanic arc environments from the 

more enriched U and Th continental arc zircons (Grimes et al., 2015; Barth et al., 2017; Figure 

13).  Oceanic arc zircons are transitional in composition between the mid-ocean ridge and 

continental arc data arrays.  A useful approach to differentiate among arc zircon suites is based 

on their level of U/Yb enrichment, which extends from the lowest in oceanic arcs such as the 

Aleutians and Izu-Bonin (U/Yb as low as 0.04 but extending to 0.1-0.3) to moderately enriched 

suites with U/Yb ~0.1 to 1 (Cascades), to strongly enriched suites with U/Yb 1 (Andes, Sierra 

Triassic).  In general U/Yb ranges in zircon suites follow the major element characteristics of 

their host melts. Zircons from the early Izu-Bonin arc, a relatively lithophile element-depleted 

(low to medium K) juvenile oceanic arc, record growth in less enriched, low U/Yb silicic melts 
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compared to medium and high U/Yb melts from relatively lithophile element-enriched (medium 

to high K) transitional and continental settings such as the Cascade and Andean arcs. 

Triassic and Jurassic zircons in the Ritter Range pendant have medium to high U/Yb and Nb/Yb 

~0.01 to 0.05, similar to those in modern medium to high K arcs. Triassic and Jurassic zircons 

are enriched in Nb as well as U compared to zircons from mid-ocean ridges and Izu-Bonin 

oceanic arc zircons, likely reflecting relative contributions of both slab and lithospheric mantle to 

enriched melt compositions in the Sierran arc. Older Triassic zircons have uniformly high U/Yb, 

overlapping with zircons from contemporaneous volcaniclastic rocks from the Saddlebag Lake 

and Mount Morrison pendants and 2 to 3 times higher than typical Jurassic zircons over similar 

ranges in Hf concentrations. These data indicate that Triassic zircons across a significant strike 

length of the juvenile Sierran arc record early arc silicic melts that were significantly U-enriched 

compared to silicic melts in the juvenile Izu-Bonin arc, and significantly enriched relative to 

melts formed later in the evolving arc in Jurassic time. 

The strong U enrichment in Triassic zircons is also reflected in very low Th/U. The Triassic 

zircons have Th/U mostly ~0.2-0.5, among the lowest ranges observed for arc magmatic suites, 

which typically have a Th/U range of 0.5-1.0.  Although enrichment of U and Th is a hallmark of 

arc magmatism, it appears that extreme U enrichment is not accompanied by comparable Th 

enrichment in this case.  The east Sierra Jurassic zircons have significantly higher Th/U, mostly 

0.5 to 1.5, ranging up to 2.1 and extending to values higher than is typical of arc magmatic 

suites.  If relative U and Th abundances are controlled by slab fluid characteristics, then the 

nature of the slab contribution was dramatically different between the Triassic and Jurassic, 
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possibly because of more water-rich, oxidizing conditions in the Triassic.  Alternatively, the 

observed differences might be the result of differences in lithospheric source composition. 

Jurassic zircons formed after a significant regional lull in Sierran volcanism between about 216 

and 174 Ma. Zircons in Jurassic rocks show significant differences in average composition 

relative to Triassic zircons from the juvenile arc. The high Ti, high Th/U and relatively low U/Yb 

in Jurassic zircons can be explained by formation of relatively hotter melts and by partial 

decoupling of U from Th in the Jurassic volcanic arc. Relative Ce abundances are also very 

different between the main east Sierra Triassic and Jurassic zircon groups with the Jurassic 

having a much stronger Ce enrichment.  Decoupling of U from Th and Ce could reflect the 

relative temperature of the slab-derived component, with relatively higher-T fluid or slab melt 

playing a more important role in Jurassic volcanism. Alternatively, hydrous melting of a 

relatively enriched lithospheric mantle and/or lower crustal source of southwestern US (Mojave) 

craton-type could have been a more important component of magmatism in the Jurassic arc, 

reflecting rearrangement of the sub-arc lithosphere (shortening?) as the arc evolved. 

Structural Stratigraphy of the Ritter Range Pendant 

Based on conventional TIMS zircon ages, Tobisch et al. (2000) divided the volcanic section in 

the Ritter Range pendant into four structural blocks (Figure 3) and reasoned that the section is 

duplicated by cryptic thrust faults subparallel to bedding. New SIMS ages for ignimbrites 

reported here expand on this model for the local and regional tectonic stratigraphy of Mesozoic 

metavolcanic rocks in the pendant (Figures 3 and 4). Zircon ages of 169 to 171 Ma for the tuffs 

of Rosalie Lake and lower Shadow Meadows (lower and upper tuff units) are older than TIMS 
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ages, but within uncertainties allow correlation of these tuffs, as suggested by Tobisch et al. 

(2000) and supported by similar whole rock compositional ranges (Figure 8). However, both 

Triassic and Jurassic tuffs are exposed beneath the tuff of Rosalie Lake and the 167 Ma tuff of 

West Shadow Lake lies above it, indicating that blocks I and II both contain repeated 

stratigraphic sections. Tobisch et al. (2000) previously proposed a similar history of internal 

imbrication for block III as well. Thus, geochronologic data indicate that most or all of the early 

Mesozoic section in the eastern Ritter Range pendant is an internally imbricated composite 

volcanic section. 

Tobisch et al. (2000) suggested that tilting and imbrication of the volcanic section primarily 

records northeast-directed thrusting between 164 and 105 Ma. Fabrics along exposed, faulted 

contacts between imbricated blocks consistently show steeply plunging lineations and a 

predominant component of west-side-up shear (Tobisch and Fiske, 1982; Sharp et al., 2000). 

Metavolcanic rocks with comparable steep dips extend to the north into the Saddlebag Lake 

pendant, where they were interpreted to have been imbricated by thrusting in Late Jurassic time 

(Schweickert and Lahren, 2006; Barth et al., 2011). To the south, comparably steeply dipping 

Middle Jurassic metavolcanic rocks in the Oak Creek pendant were deformed and tilted prior to 

emplacement of the Independence dike swarm (Saleeby et al., 1990; Barth et al., 2014). Regional 

continuity in the style and timing of Late Jurassic imbrication and tilting of the early Mesozoic 

arc section in the eastern Sierra thus is likely to record the development of the East Sierran thrust 

system (Tobisch et al., 2000; Schweickert and Lahren, 1993, 2006; Dunne and Walker, 2004). 

Steeply dipping ductile fabrics with subhorizontal stretching lineations along the contact between 

the metavolcanic section and Paleozoic metasedimentary rocks record later dextral shear linking 
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the Cretaceous Gem Lake and Rosy Finch shear zones (Greene and Schweickert, 1995; Tikoff 

and Saint Blanquat, 1997; Tikoff and Greene, 1997). Overall regional tilting may have been 

enhanced by later downward flow during pluton emplacement in the Cretaceous arc (Tobisch et 

al., 2000). 

CONCLUSIONS 

Although ignimbrites in the Ritter Range pendant exhibit a wide range of SIMS U-Pb ages, 

regional correlations across several pendants suggest first-order episodic production of zircon-

saturated silicic melts in the juvenile Sierran volcanic arc. Distinct pulses of ignimbrite  

deposition at ca. 221 to 216 Ma and 174 to 167 Ma were coeval with plutons of the underlying 

batholith, indicating that explosive silicic arc volcanism and batholith construction were closely 

coupled at relatively short time scales. The geochemistry of zircons records secular variation in 

silicic melts in the volcanic arc, suggesting significant changes in the nature of the slab 

contributions and/or overriding plate lithospheric magma sources between the juvenile Triassic 

and mature Jurassic arc stages. Future geochronologic and Hf and Pb isotopic studies in well-

dated volcaniclastic arc sections can clarify the nature of the diminished arc magmatic flux  

between these two pulses of ignimbrite deposition, and the pace and style of changes in mafic 

and silicic lithospheric magma sources as the arc evolved. 
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Table 1. SIMS U-Pb zircon geochronology of Triassic and Jurassic tuffs in the Ritter Range and 

Mount Morrison pendants 

Rock Unit Sample# SiO2 Age (Ma) 

Ritter Range pendant 

tuff of west Shadow Lake 14953 67.7% 167±2 

tuff of lower Shadow Falls 14957 n.a. 168±2 

tuff of upper Shadow Meadows 14949 75.3% 168.6±1 

tuff of Rosalie Lake  14940 70.0% 169±2 

tuff of lower Shadow Meadows 14950 73.8% 170.8±1 

tuff of Olaine Lake 14961 n.a. 171±2 

tuff RR8943 n.a. 174±3 

tuff RR9033 n.a. 206±2 

tuff of upper Shadow Falls (Little Pink) 14948 70.5% 207.3±1 

tuff of San Joaquin Mountain (upper)  14964 70.7% 218±2 
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tuff of upper Shadow Falls (Little White) 14946 73.1% 219.0±1 

tuff of upper Shadow Falls (Big Pink) 14947 74.8% 219±2 

tuff of Agnew Meadows (lower) 14960 n.a. 220±2 

tuff of Agnew Meadows (upper) 14962 n.a. 220±2 

tuff of San Joaquin Mountain (lower)  14969 71.5% 220±2 

tuff of San Joaquin Mountain (middle) 14967 74.6% 221±2 

Mount Morrison pendant 

tuff of Skelton Lake  11858 72.4% 216.5±1 

n.a. - not analyzed
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FIGURE CAPTIONS 

Figure 1. Geologic map showing plutonic rocks and pendants of the east-central Sierra Nevada 

and Mono Basin - northern Owens Valley region, adapted from Rinehart and Ross (1957), 

Bateman (1992), Huber and Rinehart (1965), Kistler (1966a, b), Crowder et al. (1972), 

Krauskopf and Bateman (1977), and Schweickert and Lahren (1999). MMP = Mount Morrison 

pendant, PCP = Pine Creek pendant, RRP = Ritter Range pendant, SLP = Saddlebag Lake 

pendant. 

Figure 2. Geochronology sample location map, eastern Ritter Range pendant. See Figure 1 for 

location.  

Figure 3. Geologic map, eastern Ritter Range pendant, adapted from unpublished mapping by R. 

Fiske. See Figure 1 for location. Rounded rectangles are SIMS zircon ages (in Ma) from this 

study, circles are TIMS zircon ages from Tobisch et al. (2000). Structural blocks shown at left 

are from Tobisch et al. (2000). 

Figure 4. Stratigraphic column for volcanic rocks of the Koip sequence in the Ritter Range 

pendant. Numbers to the right locate ignimbrites with Pb/U zircon ages in Ma. SIMS ages from 

this study and TIMS ages from Tobisch et al. (2000). ‘EJR’ locates limestone interval with Early 

Jurassic fossil age from Rinehart et al. (1959). 

Figure 5. Tuffs are deformed and weakly regionally metamorphosed (Tobisch et al., 1977) but 

primary igneous textures are commonly well-preserved. Finite strain is heterogeneous, with 

average shortening ~30 to 50% but porphyritic textures are well preserved in low strain zones. 

A, B. Photomicrographs of porphyritic Jurassic tuff of Rosalie Lake with euhedral, weakly 

internally-deformed quartz and feldspar phenocrysts. C, D. Photomicrographs of porphyritic 
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Triassic tuffs of upper Shadow Falls and Agnew Meadows with subhedral quartz and feldspar 

phenocrysts. Field of view ~1mm across in all photomicrographs. 

Figure 6. Zircon spot analyses and weighted mean 
206

Pb*/
238

U ages for rocks of the eastern

Ritter Range pendant. Individual zircon ages are plotted as 2σ error bars. Weighted mean ages,

interpreted as the crystallization age, are shown with associated 2σ errors. Zircon spot analyses

plotted with lightly-shaded error bars were excluded from the age calculation.  

Figure 7. Zircon age summary for extrusive rocks from pendants in the early Mesozoic east 

Sierran arc and for plutons of adjacent intrusive suites. Solid diamonds are SIMS weighted mean 

206
Pb*/

238
U zircon ages (with 2σ errors); open diamonds are TIMS zircon ages. Additional TIMS

data are from Saleeby et al. (1990), Tobisch et al. (2000), Mahan et al. (2003), and additional 

SIMS and TIMS data from Barth et al. (2011, 2014). Timing of magmatic pulses (p1, p2) and 

intervening lull (l1) in the California arc from Barth et al. (2013). 

Figure 8. Whole rock potassium, titanium and aluminum contents as a function of silica content 

of early Mesozoic tuffs of the eastern Ritter Range. Analyses of tuffs of Davis Lakes and 

Nydiver Lakes and additional data for the tuff of Rosalie Lake are from Sorensen et al. (1998); 

Saddlebag Lake pendant Triassic tuffs from Barth et al. (2012). 

Figure 9. Whole rock trace element abundances in dacitic to rhyolitic tuffs of the eastern Ritter 

Range, normalized to primitive mantle (McDonough and Sun, 1995). Symbols as in Figure 8. 

Tuffs are compared to Oligocene dacite to rhyolite whole rocks and glasses from the early Izu-

Bonin arc (IB; Ishizuka et al., 2011; Brandl et al., 2017). 

Figure 10. Hf and Ti abundances and Ce/U in Triassic and Jurassic magmatic zircons from 

Ritter Range tuffs. Note that zircons have similar ranges in Hf and show decreasing Ce/U and Ti 
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with fractionation. Triassic zircons are relatively depleted in Ti and have lower average Ce/U. 

Saddlebag Lake data are from Barth et al. (2012) and Shukle et al. (2016). 

Figure 11. Th/U and Ce/Yb variations in magmatic zircons. Triassic zircons in tuffs from the 

Ritter Range, Saddlebag Lake and Mount Morrison pendants that have low average Th/U are 

relatively depleted in Ce and Th. Note that the youngest Triassic samples are transitional in 

character. Saddlebag Lake data are from Barth et al. (2012) and Shukle et al. (2016). 

Figure 12. Scandium and Uranium enrichment in oceanic arc and Sierran zircons compared to 

modern mid-ocean ridge, back-arc basin, and intraplate magmatic zircons. Data sources: mid-

ocean ridge zircons from Grimes et al. (2009); intraplate zircons from Carley et al. (2011); back-

arc basin and oceanic arc zircons from Barth et al. (2017). 

Figure 13. (A, B) Uranium enrichment in arc zircons (Claiborne, 2011; Coombs and Vazquez, 

2014; Dilles et al., 2015; Barth et al., 2017). The well-known lithophile element enrichment of 

arc lavas from convergent margin settings is reflected in relative U enrichment in zircons, where 

low to high U/Yb zircons formed in low to high K silicic arc melts. (C, D) Nb/Yb vs. U/Yb 

diagram illustrating slab-related non-conservative behavior of arc-derived zircons relative to 

non-slab-related mantle enrichment. Main MOR – OI array is based on mid-ocean ridge zircons

from the Mid-Atlantic and Indian ridges (Grimes et al., 2009) and ocean island zircons from 

Iceland (Carley et al., 2011). 
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