6 research outputs found

    Linear filtering reveals false negatives in species interaction data

    Get PDF
    Species interaction datasets, often represented as sparse matrices, are usually collected through observation studies targeted at identifying species interactions. Due to the extensive required sampling effort, species interaction datasets usually contain many false negatives, often leading to bias in derived descriptors. We show that a simple linear filter can be used to detect false negatives by scoring interactions based on the structure of the interaction matrices. On 180 different datasets of various sizes, sparsities and ecological interaction types, we found that on average in about 75% of the cases, a false negative interaction got a higher score than a true negative interaction. Furthermore, we show that this filter is very robust, even when the interaction matrix contains a very large number of false negatives. Our results demonstrate that unobserved interactions can be detected in species interaction datasets, even without resorting to information about the species involved

    Information core optimization using Evolutionary Algorithm with Elite Population in recommender systems

    Get PDF
    Recommender system (RS) plays an important role in helping users find the information they are interested in and providing accurate personality recommendation. It has been found that among all the users, there are some user groups called “core users” or “information core” whose historical behavior data are more reliable, objective and positive for making recommendations. Finding the information core is of great interests to greatly increase the speed of online recommendation. There is no general method to identify core users in the existing literatures. In this paper, a general method of finding information core is proposed by modelling this problem as a combinatorial optimization problem. A novel Evolutionary Algorithm with Elite Population (EA-EP) is presented to search for the information core, where an elite population with a new crossover mechanism named as ordered crossover is used to accelerate the evolution. Experiments are conducted on Movielens (100k) to validate the effectiveness of our proposed algorithm. Results show that EA-EP is able to effectively identify core users and leads to better recommendation accuracy compared to several existing greedy methods and the conventional collaborative filter (CF). In addition, EA-EP is shown to significantly reduce the time of online recommendation

    A generalized model via random walks for information filtering

    Get PDF
    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation

    Efficiency in Machine Learning with Focus on Deep Learning and Recommender Systems

    Full text link
    Machine learning algorithms have opened up countless doors for scientists tackling problems that had previously been inaccessible, and the applications of these algorithms are far from exhausted. However, as the complexity of the learning problem grows, so does the computational and memory cost of the appropriate learning algorithm. As a result, the training process for computationally heavy algorithms can take weeks or even months to reach a good result, which can be prohibitively expensive. The general inefficiencies of machine learning algorithms is a significant bottleneck slowing the progress in application sciences. This thesis introduces three new methods of improving the efficiency of machine learning algorithms focusing on expensive algorithms such as neural networks and recommender systems. The first method discussed makes structured reductions of fully connected layers in neural networks, which causes speedup during training and decreases the amount of storage required. The second method presented is an accelerated gradient descent method called Predictor-Corrector Gradient Descent (PCGD) that combines predictor-corrector techniques with stochastic gradient descent. The final technique introduced generates Artificial Core Users (ACUs) from the Core Users of a recommendation dataset. Core Users condense the number of users in a recommendation dataset without significant loss of information; Artificial Core Users improve the recommendation accuracy of Core Users yet still mimic real user data.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162928/1/anesky_1.pd

    Structure-oriented prediction in complex networks

    Get PDF
    Complex systems are extremely hard to predict due to its highly nonlinear interactions and rich emergent properties. Thanks to the rapid development of network science, our understanding of the structure of real complex systems and the dynamics on them has been remarkably deepened, which meanwhile largely stimulates the growth of effective prediction approaches on these systems. In this article, we aim to review different network-related prediction problems, summarize and classify relevant prediction methods, analyze their advantages and disadvantages, and point out the forefront as well as critical challenges of the field
    corecore